Incomplete vesicular docking limits synaptic strength under high release probability conditions

  1. Gerardo Malagon
  2. Takafumi Miki
  3. Van Tran
  4. Laura Gomez
  5. Alain Marty  Is a corresponding author
  1. Washington University, United States
  2. Doshisha University, Japan
  3. Paris Descartes University, France
  4. Université de Paris, France

Abstract

Central mammalian synapses release synaptic vesicles in dedicated structures called docking/release sites. It has been assumed that when voltage-dependent calcium entry is sufficiently large, synaptic output attains a maximum value of one synaptic vesicle per action potential and per site. Here we use deconvolution to count synaptic vesicle output at single sites (mean site number per synapse: 3.6). When increasing calcium entry with tetraethylammonium in 1.5 mM external calcium concentration, we find that synaptic output saturates at 0.22 vesicle per site, not at 1 vesicle per site. Fitting the results with current models of calcium-dependent exocytosis indicates that the 0.22 vesicle limit reflects the probability of docking sites to be occupied by synaptic vesicles at rest, as only docked vesicles can be released. With 3 mM external calcium, the maximum output per site increases to 0.47, indicating an increase in docking site occupancy as a function of external calcium concentration.

Data availability

Igor files of the analysis, that contain the entire list of analysis operations are provided as Source Data 1.

Article and author information

Author details

  1. Gerardo Malagon

    Department of Cell Biology and Physiology, Washington University, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Takafumi Miki

    Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Van Tran

    SSPIN-Saints Peres Institue for the Neurosciences, Paris Descartes University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Gomez

    SSPIN-Saints Peres Institue for the Neurosciences, Paris Descartes University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain Marty

    SPPIN-Saints Pères Paris Institute for the Neurosciences, Université de Paris, Paris, France
    For correspondence
    alain.marty@parisdescartes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6478-6880

Funding

H2020 European Research Council (294509)

  • Gerardo Malagon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Version history

  1. Received: September 23, 2019
  2. Accepted: March 23, 2020
  3. Accepted Manuscript published: March 31, 2020 (version 1)
  4. Version of Record published: April 6, 2020 (version 2)

Copyright

© 2020, Malagon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,246
    views
  • 291
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gerardo Malagon
  2. Takafumi Miki
  3. Van Tran
  4. Laura Gomez
  5. Alain Marty
(2020)
Incomplete vesicular docking limits synaptic strength under high release probability conditions
eLife 9:e52137.
https://doi.org/10.7554/eLife.52137

Share this article

https://doi.org/10.7554/eLife.52137

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.