Incomplete vesicular docking limits synaptic strength under high release probability conditions

  1. Gerardo Malagon
  2. Takafumi Miki
  3. Van Tran
  4. Laura Gomez
  5. Alain Marty  Is a corresponding author
  1. Washington University, United States
  2. Doshisha University, Japan
  3. Paris Descartes University, France
  4. Université de Paris, France
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/52137/elife-52137-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gerardo Malagon
  2. Takafumi Miki
  3. Van Tran
  4. Laura Gomez
  5. Alain Marty
(2020)
Incomplete vesicular docking limits synaptic strength under high release probability conditions
eLife 9:e52137.
https://doi.org/10.7554/eLife.52137