The single-cell eQTLGen consortium

  1. Monique GP van der Wijst  Is a corresponding author
  2. Dylan H de Vries
  3. Hilde E Groot
  4. Gosia Trynka
  5. Chung-Chau Hon
  6. Marc-Jan Bonder
  7. Oliver Stegle
  8. Martijn Nawijn
  9. Youssef Idaghdour
  10. Pim van der Harst
  11. Chun J Ye
  12. Joseph Powell
  13. Fabian J Theis
  14. Ahmed Mahfouz
  15. Matthias Heinig
  16. Lude Franke
  1. University of Groningen, University Medical Center Groningen, Netherlands
  2. Wellcome Sanger Institute, United Kingdom
  3. RIKEN Center for Integrative Medical Sciences, Japan
  4. European Molecular Biology Laboratory, European Bioinformatics Institute, United Kingdom
  5. DKFZ, Germany
  6. New York University Abu Dhabi, United Arab Emirates
  7. University of California, San Francisco, United States
  8. Garvan Institute, Australia
  9. Helmholtz Zentrum München, Germany
  10. Leiden University Medical Center, Netherlands
  11. Institute of Computational Biology, Helmholtz Zentrum München, Technical University of Munich, Germany

Abstract

In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. To fully leverage these emerging data resources, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.

Data availability

Not applicable

Article and author information

Author details

  1. Monique GP van der Wijst

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    m.g.p.van.der.wijst@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1520-3970
  2. Dylan H de Vries

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Hilde E Groot

    Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8265-3085
  4. Gosia Trynka

    Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6955-9529
  5. Chung-Chau Hon

    Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokahama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc-Jan Bonder

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8431-3180
  7. Oliver Stegle

    DKFZ, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martijn Nawijn

    Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3372-6521
  9. Youssef Idaghdour

    Program in Biology, Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2768-9376
  10. Pim van der Harst

    Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2713-686X
  11. Chun J Ye

    Division of Rheumatology, Department of Medicine, Department of Bioengineering and Therapeutic Sciences, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Joseph Powell

    Garvan Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Fabian J Theis

    Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2419-1943
  14. Ahmed Mahfouz

    Single cell analysis, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8601-2149
  15. Matthias Heinig

    Germany Department of Informatics, Institute of Computational Biology, Helmholtz Zentrum München, Technical University of Munich, Neuherberg, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5612-1720
  16. Lude Franke

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Dutch Research Council (NWO-Veni 192.029)

  • Monique GP van der Wijst

Dutch Research Council (ZonMW-VIDI 917.14.374)

  • Lude Franke

European Research Council (ERC Starting grant Immrisk 637640)

  • Lude Franke

Oncode Institute

  • Lude Franke

National Health and Medical Research Council (Investigator grant 1175781)

  • Joseph Powell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Helena Pérez Valle, eLife, United Kingdom

Publication history

  1. Received: September 24, 2019
  2. Accepted: March 3, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: March 17, 2020 (version 2)

Copyright

© 2020, van der Wijst et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,920
    Page views
  • 1,165
    Downloads
  • 92
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monique GP van der Wijst
  2. Dylan H de Vries
  3. Hilde E Groot
  4. Gosia Trynka
  5. Chung-Chau Hon
  6. Marc-Jan Bonder
  7. Oliver Stegle
  8. Martijn Nawijn
  9. Youssef Idaghdour
  10. Pim van der Harst
  11. Chun J Ye
  12. Joseph Powell
  13. Fabian J Theis
  14. Ahmed Mahfouz
  15. Matthias Heinig
  16. Lude Franke
(2020)
The single-cell eQTLGen consortium
eLife 9:e52155.
https://doi.org/10.7554/eLife.52155

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Arturo Torres Ortiz, Michelle Kendall ... Louis Grandjean
    Research Article

    Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is partially maintained among repeated serial samples from the same host, it can transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.

    1. Cancer Biology
    2. Genetics and Genomics
    Ann-Kathrin Herzfeldt, Marta Puig Gamez ... Lee Kim Swee
    Research Article

    Cytotoxic CD8+ T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon‑γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.