The single-cell eQTLGen consortium

  1. Monique GP van der Wijst  Is a corresponding author
  2. Dylan H de Vries
  3. Hilde E Groot
  4. Gosia Trynka
  5. Chung-Chau Hon
  6. Marc-Jan Bonder
  7. Oliver Stegle
  8. Martijn Nawijn
  9. Youssef Idaghdour
  10. Pim van der Harst
  11. Chun J Ye
  12. Joseph Powell
  13. Fabian J Theis
  14. Ahmed Mahfouz
  15. Matthias Heinig
  16. Lude Franke
  1. University of Groningen, University Medical Center Groningen, Netherlands
  2. Wellcome Sanger Institute, United Kingdom
  3. RIKEN Center for Integrative Medical Sciences, Japan
  4. European Molecular Biology Laboratory, European Bioinformatics Institute, United Kingdom
  5. DKFZ, Germany
  6. New York University Abu Dhabi, United Arab Emirates
  7. University of California, San Francisco, United States
  8. Garvan Institute, Australia
  9. Helmholtz Zentrum München, Germany
  10. Leiden University Medical Center, Netherlands
  11. Institute of Computational Biology, Helmholtz Zentrum München, Technical University of Munich, Germany

Abstract

In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. To fully leverage these emerging data resources, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.

Data availability

Not applicable

Article and author information

Author details

  1. Monique GP van der Wijst

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    m.g.p.van.der.wijst@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1520-3970
  2. Dylan H de Vries

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Hilde E Groot

    Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8265-3085
  4. Gosia Trynka

    Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6955-9529
  5. Chung-Chau Hon

    Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokahama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc-Jan Bonder

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8431-3180
  7. Oliver Stegle

    DKFZ, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martijn Nawijn

    Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3372-6521
  9. Youssef Idaghdour

    Program in Biology, Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2768-9376
  10. Pim van der Harst

    Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2713-686X
  11. Chun J Ye

    Division of Rheumatology, Department of Medicine, Department of Bioengineering and Therapeutic Sciences, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Joseph Powell

    Garvan Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Fabian J Theis

    Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2419-1943
  14. Ahmed Mahfouz

    Single cell analysis, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8601-2149
  15. Matthias Heinig

    Germany Department of Informatics, Institute of Computational Biology, Helmholtz Zentrum München, Technical University of Munich, Neuherberg, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5612-1720
  16. Lude Franke

    Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Dutch Research Council (NWO-Veni 192.029)

  • Monique GP van der Wijst

Dutch Research Council (ZonMW-VIDI 917.14.374)

  • Lude Franke

European Research Council (ERC Starting grant Immrisk 637640)

  • Lude Franke

Oncode Institute

  • Lude Franke

National Health and Medical Research Council (Investigator grant 1175781)

  • Joseph Powell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, van der Wijst et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,969
    views
  • 1,254
    downloads
  • 161
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monique GP van der Wijst
  2. Dylan H de Vries
  3. Hilde E Groot
  4. Gosia Trynka
  5. Chung-Chau Hon
  6. Marc-Jan Bonder
  7. Oliver Stegle
  8. Martijn Nawijn
  9. Youssef Idaghdour
  10. Pim van der Harst
  11. Chun J Ye
  12. Joseph Powell
  13. Fabian J Theis
  14. Ahmed Mahfouz
  15. Matthias Heinig
  16. Lude Franke
(2020)
The single-cell eQTLGen consortium
eLife 9:e52155.
https://doi.org/10.7554/eLife.52155

Further reading

    1. Genetics and Genomics
    Jorge Blanco Mendana, Margaret Donovan ... Daryl M Gohl
    Tools and Resources

    Advances in single-cell sequencing technologies have provided novel insights into the dynamics of gene expression and cellular heterogeneity within tissues and have enabled the construction of transcriptomic cell atlases. However, linking anatomical information to transcriptomic data and positively identifying the cell types that correspond to gene expression clusters in single-cell sequencing data sets remains a challenge. We describe a straightforward genetic barcoding approach that takes advantage of the powerful genetic tools in Drosophila to allow in vivo tagging of defined cell populations. This method, called Targeted Genetically-Encoded Multiplexing (TaG-EM), involves inserting a DNA barcode just upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct so that the barcode sequence can be read out during single-cell sequencing, labeling a cell population of interest. By creating many such independently barcoded fly strains, TaG-EM enables positive identification of cell types in cell atlas projects, identification of multiplet droplets, and barcoding of experimental timepoints, conditions, and replicates. Furthermore, we demonstrate that TaG-EM barcodes can be read out using next-generation sequencing to facilitate population-scale behavioral measurements. Thus, TaG-EM has the potential to enable large-scale behavioral screens in addition to improving the ability to multiplex and reliably annotate single-cell transcriptomic experiments.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.