A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery

Abstract

The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.

Data availability

CryoEM maps and models have been deposited in the EMDB and PDB.

The following data sets were generated

Article and author information

Author details

  1. Zev A Ripstein

    Department of Biochemistry, University of Toronto, Toronto, Canada
    For correspondence
    zevripstein@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3601-0596
  2. Siavash Vahidi

    Department of Biochemistry, University of Toronto, Toronto, Canada
    For correspondence
    siavashvahidi@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8637-3710
  3. Walid A Houry

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. John L Rubinstein

    Department of Biochemistry, University of Toronto, Toronto, Canada
    For correspondence
    john.rubinstein@sickkids.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  5. Lewis E Kay

    Department of Biochemistry, University of Toronto, Toronto, Canada
    For correspondence
    kay@pound.med.utoronto.ca
    Competing interests
    Lewis E Kay, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4054-4083

Funding

Canadian Institutes of Health Research (FDN-503573)

  • Lewis E Kay

Canadian Institutes of Health Research (PJT-162186)

  • John L Rubinstein

Canadian Institutes of Health Research (PJT-148564)

  • Walid A Houry

Canadian Institutes of Health Research

  • Zev A Ripstein

Canadian Institutes of Health Research

  • Siavash Vahidi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Version history

  1. Received: September 24, 2019
  2. Accepted: January 8, 2020
  3. Accepted Manuscript published: January 9, 2020 (version 1)
  4. Version of Record published: April 1, 2020 (version 2)

Copyright

© 2020, Ripstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,213
    views
  • 749
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zev A Ripstein
  2. Siavash Vahidi
  3. Walid A Houry
  4. John L Rubinstein
  5. Lewis E Kay
(2020)
A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery
eLife 9:e52158.
https://doi.org/10.7554/eLife.52158

Share this article

https://doi.org/10.7554/eLife.52158

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.