Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space

  1. Travis A Babola
  2. Calvin J Kersbergen
  3. Han Chin Wang
  4. Dwight E Bergles  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in supporting cells regulates hair cell excitability by controlling the volume of the extracellular space.

Data availability

All data generated or analyzed in this study are included in the manuscript. Source code for analysis and figure generation are located at: https://github.com/tbabola/P2ry1_eLife_SourceCode

The following previously published data sets were used

Article and author information

Author details

  1. Travis A Babola

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4440-5029
  2. Calvin J Kersbergen

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Han Chin Wang

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    dbergles@jhmi.edu
    Competing interests
    Dwight E Bergles, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378

Funding

National Institute on Deafness and Other Communication Disorders (DC016497)

  • Travis A Babola

National Institute on Deafness and Other Communication Disorders (DC008860)

  • Dwight E Bergles

National Institute of Neurological Disorders and Stroke (NS091018)

  • Travis A Babola

National Institute on Deafness and Other Communication Disorders (DC000023)

  • Travis A Babola

Brain Science Institute, Johns Hopkins University

  • Dwight E Bergles

Rubenstein Fund for Hearing Research

  • Dwight E Bergles

Otonomy, Inc

  • Dwight E Bergles

National Institute of Neurological Disorders and Stroke (NS050274)

  • Dwight E Bergles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations provided in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments and procedures were approved by the Johns Hopkins Institutional Care and Use Committee (protocol M018M330). All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Reviewing Editor

  1. Andrew J. King, University of Oxford, United Kingdom

Publication history

  1. Received: September 24, 2019
  2. Accepted: January 7, 2020
  3. Accepted Manuscript published: January 8, 2020 (version 1)
  4. Version of Record published: February 12, 2020 (version 2)

Copyright

© 2020, Babola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,501
    Page views
  • 372
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Travis A Babola
  2. Calvin J Kersbergen
  3. Han Chin Wang
  4. Dwight E Bergles
(2020)
Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space
eLife 9:e52160.
https://doi.org/10.7554/eLife.52160

Further reading

    1. Developmental Biology
    Julia Falo-Sanjuan, Sarah Bray
    Research Article

    Cells sense and integrate external information from diverse sources that include mechanical cues. Shaping of tissues during development may thus require coordination between mechanical forces from morphogenesis and cell-cell signalling to confer appropriate changes in gene expression. By live-imaging Notch-induced transcription in real time we have discovered that morphogenetic movements during Drosophila gastrulation bring about an increase in activity-levels of a Notch responsive enhancer. Mutations that disrupt the timing of gastrulation resulted in concomitant delays in transcription up-regulation that correlated with the start of mesoderm invagination. As a similar gastrulation-induced effect was detected when transcription was elicited by the intracellular domain NICD, it cannot be attributed to forces exerted on Notch receptor activation. A Notch independent vnd enhancer also exhibited a modest gastrulation-induced activity increase in the same stripe of cells. Together, these observations argue that gastrulation-associated forces act on the nucleus to modulate transcription levels. This regulation was uncoupled when the complex linking the nucleoskeleton and cytoskeleton (LINC) was disrupted, indicating a likely conduit. We propose that the coupling between tissue level mechanics, arising from gastrulation, and enhancer activity represents a general mechanism for ensuring correct tissue specification during development and that Notch dependent enhancers are highly sensitive to this regulation.

    1. Developmental Biology
    2. Medicine
    Derek C Sung et al.
    Short Report Updated

    During formation of the mammalian placenta, trophoblasts invade the maternal decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular invasion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restriction, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during placental development and suggest that endothelial proteins may play functionally unique roles in trophoblasts that do not simply mimic those in ECs.