Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state

  1. Miri Shnayder
  2. Aharon Nachshon
  3. Batsheva Rozman
  4. Biana Bernshtein
  5. Michael Lavi
  6. Noam Fein
  7. Emma Poole
  8. Selmir Avdic
  9. Emily Blyth
  10. David Gottlieb
  11. Allison Abendroth
  12. Barry Slobedman
  13. John Sinclair
  14. Noam Stern-Ginossar  Is a corresponding author
  15. Michal Schwartz  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. University of Cambridge, United Kingdom
  3. Sydney Cellular Therapies Laboratory, Australia
  4. University of Sydney, Australia

Abstract

Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.

Data availability

Sequencing data have been deposited in GEO under accession code GSE138838

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Miri Shnayder

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Aharon Nachshon

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Batsheva Rozman

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Biana Bernshtein

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Lavi

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Noam Fein

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Emma Poole

    Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3904-6121
  8. Selmir Avdic

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Emily Blyth

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. David Gottlieb

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Allison Abendroth

    Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Barry Slobedman

    Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9431-6094
  13. John Sinclair

    Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Noam Stern-Ginossar

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    noam.stern-ginossar@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3583-5932
  15. Michal Schwartz

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    michalsc@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5442-0201

Funding

Infect-ERA (TANKACY)

  • Noam Stern-Ginossar

H2020 European Research Council (starting grant (StG-2014-638142))

  • Noam Stern-Ginossar

Cambridge NIHR BRC Cell Phenotyping Hub

  • John Sinclair

British Medical Research Council (G0701279)

  • John Sinclair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All fresh peripheral blood samples were obtained after approval of protocols bythe Weizmann Institutional Review Board (IRB application 92-1). Informed written consent was obtained from all volunteers, and all experiments were carried out in accordance with the approved guidelines. The study using HSCT recipient samples was approved by the Human Research Ethics Committee of the University of Sydney and the Western Sydney Local Health District. Informed consent was obtained from all study participants prior to enrolment in accordance with the Declaration of Helsinki.

Copyright

© 2020, Shnayder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 634
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miri Shnayder
  2. Aharon Nachshon
  3. Batsheva Rozman
  4. Biana Bernshtein
  5. Michael Lavi
  6. Noam Fein
  7. Emma Poole
  8. Selmir Avdic
  9. Emily Blyth
  10. David Gottlieb
  11. Allison Abendroth
  12. Barry Slobedman
  13. John Sinclair
  14. Noam Stern-Ginossar
  15. Michal Schwartz
(2020)
Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state
eLife 9:e52168.
https://doi.org/10.7554/eLife.52168

Share this article

https://doi.org/10.7554/eLife.52168

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    David Duneau, Pierre DM Lafont ... Jean-Baptiste Ferdy
    Research Article

    How are some individuals surviving infections while others die? The answer lies in how infected individuals invest into controlling pathogen proliferation and mitigating damage, two strategies respectively called resistance and disease tolerance. Pathogen within-host dynamics (WHD), influenced by resistance, and its connection to host survival, determined by tolerance, decide the infection outcome. To grasp these intricate effects of resistance and tolerance, we used a deterministic theoretical model where pathogens interact with the immune system of a host. The model describes the positive and negative regulation of the immune response, consider the way damage accumulate during the infection and predicts WHD. When chronic, infections stabilize at a Set-Point Pathogen Load (SPPL). Our model predicts that this situation can be transient, the SPPL being then a predictor of life span which depends on initial condition (e.g. inoculum). When stable, the SPPL is rather diagnostic of non lethal chronic infections. In lethal infections, hosts die at a Pathogen Load Upon Death (PLUD) which is almost independent from the initial conditions. As the SPPL, the PLUD is affected by both resistance and tolerance but we demonstrate that it can be used in conjunction with mortality measurement to distinguish the effect of disease tolerance from that of resistance. We validate empirically this new approach, using Drosophila melanogaster and the pathogen Providencia rettgeri. We found that, as predicted by the model, hosts that were wounded or deficient of key antimicrobial peptides had a higher PLUD, while Catalase mutant hosts, likely to have a default in disease tolerance, had a lower PLUD.