Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state

  1. Miri Shnayder
  2. Aharon Nachshon
  3. Batsheva Rozman
  4. Biana Bernshtein
  5. Michael Lavi
  6. Noam Fein
  7. Emma Poole
  8. Selmir Avdic
  9. Emily Blyth
  10. David Gottlieb
  11. Allison Abendroth
  12. Barry Slobedman
  13. John Sinclair
  14. Noam Stern-Ginossar  Is a corresponding author
  15. Michal Schwartz  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. University of Cambridge, United Kingdom
  3. Sydney Cellular Therapies Laboratory, Australia
  4. University of Sydney, Australia

Abstract

Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.

Data availability

Sequencing data have been deposited in GEO under accession code GSE138838

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Miri Shnayder

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Aharon Nachshon

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Batsheva Rozman

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Biana Bernshtein

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Lavi

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Noam Fein

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Emma Poole

    Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3904-6121
  8. Selmir Avdic

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Emily Blyth

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. David Gottlieb

    Sydney Cellular Therapies Laboratory, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Allison Abendroth

    Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Barry Slobedman

    Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9431-6094
  13. John Sinclair

    Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Noam Stern-Ginossar

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    noam.stern-ginossar@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3583-5932
  15. Michal Schwartz

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    michalsc@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5442-0201

Funding

Infect-ERA (TANKACY)

  • Noam Stern-Ginossar

H2020 European Research Council (starting grant (StG-2014-638142))

  • Noam Stern-Ginossar

Cambridge NIHR BRC Cell Phenotyping Hub

  • John Sinclair

British Medical Research Council (G0701279)

  • John Sinclair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All fresh peripheral blood samples were obtained after approval of protocols bythe Weizmann Institutional Review Board (IRB application 92-1). Informed written consent was obtained from all volunteers, and all experiments were carried out in accordance with the approved guidelines. The study using HSCT recipient samples was approved by the Human Research Ethics Committee of the University of Sydney and the Western Sydney Local Health District. Informed consent was obtained from all study participants prior to enrolment in accordance with the Declaration of Helsinki.

Copyright

© 2020, Shnayder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,448
    views
  • 646
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miri Shnayder
  2. Aharon Nachshon
  3. Batsheva Rozman
  4. Biana Bernshtein
  5. Michael Lavi
  6. Noam Fein
  7. Emma Poole
  8. Selmir Avdic
  9. Emily Blyth
  10. David Gottlieb
  11. Allison Abendroth
  12. Barry Slobedman
  13. John Sinclair
  14. Noam Stern-Ginossar
  15. Michal Schwartz
(2020)
Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state
eLife 9:e52168.
https://doi.org/10.7554/eLife.52168

Share this article

https://doi.org/10.7554/eLife.52168

Further reading

    1. Microbiology and Infectious Disease
    Nelson V Simwela, Eleni Jaecklein ... David G Russell
    Research Article

    Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host-derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria’s ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyses demonstrate that macrophages that cannot either import, store, or catabolize fatty acids restrict Mtb growth by both common and divergent antimicrobial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy, and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.

    1. Microbiology and Infectious Disease
    Dhaval Ghone, Edward L Evans ... Aussie Suzuki
    Research Article

    Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.