β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes

  1. Sophie Schobesberger
  2. Peter T Wright
  3. Claire Poulet
  4. Jose L Sanchez Alonso Mardones
  5. Catherine Mansfield
  6. Andreas Friebe
  7. Sian E Harding
  8. Jean-Luc Balligand
  9. Viacheslav O Nikolaev  Is a corresponding author
  10. Julia Gorelik  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Würzburg, Germany
  3. Université Catholique de Louvain, Belgium
  4. Universitätsklinikum Hamburg Eppendorf, Germany

Abstract

Cardiomyocyte b3-adrenoceptors (b3-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of b3-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β3-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase 2 dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the b3-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for all figures to eLife journal.

Article and author information

Author details

  1. Sophie Schobesberger

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8268-0019
  2. Peter T Wright

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Claire Poulet

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jose L Sanchez Alonso Mardones

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Mansfield

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreas Friebe

    Physiologisches Institut, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sian E Harding

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Luc Balligand

    FATH Pole, Université Catholique de Louvain, Louvain, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Viacheslav O Nikolaev

    Experimentelle Herz Kreislaufforschung, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
    For correspondence
    v.nikolaev@uke.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Julia Gorelik

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    For correspondence
    j.gorelik@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1148-9158

Funding

British Heart Foundation (12/18/30088)

  • Julia Gorelik

Wellcome (WT090594)

  • Julia Gorelik

Deutsche Forschungsgemeinschaft (Fr 1725/3-2)

  • Andreas Friebe
  • Viacheslav O Nikolaev

National Institutes of Health (ROI-HL grant 126802)

  • Julia Gorelik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Ethics

Animal experimentation: All procedures performed in the UK were carried out according to the standards for the care and use of animal subjects determined by the UK Home Office (ASPA1986 Amendments Regulations 2012) incorporating the EU directive 2010/63/EU. The Animal Welfare and Ethical Review Body Committee of Imperial College London approved all protocols.The parts of the investigation, which were performed in Germany, conformed to the guide for the care and use of laboratory animals published by the National Institutes of Health (Bethesda, Maryland; Publication No. 85-23, revised 2011, published by National Research Council, Washington, D.C.). The experimental procedures were in accordance with the German Law for the Protection of Animals and with the guidelines of the European Community.

Version history

  1. Received: October 4, 2019
  2. Accepted: March 25, 2020
  3. Accepted Manuscript published: March 31, 2020 (version 1)
  4. Version of Record published: April 7, 2020 (version 2)

Copyright

© 2020, Schobesberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,208
    views
  • 211
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Schobesberger
  2. Peter T Wright
  3. Claire Poulet
  4. Jose L Sanchez Alonso Mardones
  5. Catherine Mansfield
  6. Andreas Friebe
  7. Sian E Harding
  8. Jean-Luc Balligand
  9. Viacheslav O Nikolaev
  10. Julia Gorelik
(2020)
β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes
eLife 9:e52221.
https://doi.org/10.7554/eLife.52221

Share this article

https://doi.org/10.7554/eLife.52221

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.