β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes

  1. Sophie Schobesberger
  2. Peter T Wright
  3. Claire Poulet
  4. Jose L Sanchez Alonso Mardones
  5. Catherine Mansfield
  6. Andreas Friebe
  7. Sian E Harding
  8. Jean-Luc Balligand
  9. Viacheslav O Nikolaev  Is a corresponding author
  10. Julia Gorelik  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Würzburg, Germany
  3. Université Catholique de Louvain, Belgium
  4. Universitätsklinikum Hamburg Eppendorf, Germany

Abstract

Cardiomyocyte b3-adrenoceptors (b3-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of b3-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β3-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase 2 dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the b3-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for all figures to eLife journal.

Article and author information

Author details

  1. Sophie Schobesberger

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8268-0019
  2. Peter T Wright

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Claire Poulet

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jose L Sanchez Alonso Mardones

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Mansfield

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreas Friebe

    Physiologisches Institut, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sian E Harding

    Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Luc Balligand

    FATH Pole, Université Catholique de Louvain, Louvain, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Viacheslav O Nikolaev

    Experimentelle Herz Kreislaufforschung, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
    For correspondence
    v.nikolaev@uke.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Julia Gorelik

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    For correspondence
    j.gorelik@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1148-9158

Funding

British Heart Foundation (12/18/30088)

  • Julia Gorelik

Wellcome (WT090594)

  • Julia Gorelik

Deutsche Forschungsgemeinschaft (Fr 1725/3-2)

  • Andreas Friebe
  • Viacheslav O Nikolaev

National Institutes of Health (ROI-HL grant 126802)

  • Julia Gorelik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures performed in the UK were carried out according to the standards for the care and use of animal subjects determined by the UK Home Office (ASPA1986 Amendments Regulations 2012) incorporating the EU directive 2010/63/EU. The Animal Welfare and Ethical Review Body Committee of Imperial College London approved all protocols.The parts of the investigation, which were performed in Germany, conformed to the guide for the care and use of laboratory animals published by the National Institutes of Health (Bethesda, Maryland; Publication No. 85-23, revised 2011, published by National Research Council, Washington, D.C.). The experimental procedures were in accordance with the German Law for the Protection of Animals and with the guidelines of the European Community.

Copyright

© 2020, Schobesberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,263
    views
  • 213
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Schobesberger
  2. Peter T Wright
  3. Claire Poulet
  4. Jose L Sanchez Alonso Mardones
  5. Catherine Mansfield
  6. Andreas Friebe
  7. Sian E Harding
  8. Jean-Luc Balligand
  9. Viacheslav O Nikolaev
  10. Julia Gorelik
(2020)
β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes
eLife 9:e52221.
https://doi.org/10.7554/eLife.52221

Share this article

https://doi.org/10.7554/eLife.52221

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.