Integration of locomotion and auditory signals in the mouse inferior colliculus

  1. Yoonsun Yang
  2. Joonyeol Lee
  3. Gunsoo Kim  Is a corresponding author
  1. Institute for Basic Science, Republic of Korea

Abstract

The inferior colliculus (IC) is the major midbrain auditory integration center, where virtually all ascending auditory inputs converge. Although the IC has been extensively studied for sound processing, little is known about the neural activity of the IC in moving subjects, as frequently happens in natural hearing conditions. Here, by recording neural activity in walking mice, we show that the activity of IC neurons is strongly modulated by locomotion, even in the absence of sound stimuli. Similar modulation was also found in hearing-impaired mice, demonstrating that IC neurons receive non-auditory, locomotion-related neural signals. Sound-evoked activity was attenuated during locomotion, and this attenuation increased frequency selectivity across the neuronal population, while maintaining preferred frequencies. Our results suggest that during behavior, integrating movement-related and auditory information is an essential aspect of sound processing in the IC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 4.

Article and author information

Author details

  1. Yoonsun Yang

    Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Joonyeol Lee

    Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Gunsoo Kim

    Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
    For correspondence
    kgunsoo@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9318-8329

Funding

Institute for Basic Science (IBS-R015-D1)

  • Gunsoo Kim

Institute for Basic Science (IBS-R015-D1)

  • Joonyeol Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the protocol (SKKUIACUC2018-02-09-1) approved by the institutional animal care and use committee (IACUC) of the Sungkyunkwan University. Surgeries were performed under isofluorane or ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 26, 2019
  2. Accepted: January 16, 2020
  3. Accepted Manuscript published: January 28, 2020 (version 1)
  4. Version of Record published: February 6, 2020 (version 2)

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,584
    views
  • 499
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoonsun Yang
  2. Joonyeol Lee
  3. Gunsoo Kim
(2020)
Integration of locomotion and auditory signals in the mouse inferior colliculus
eLife 9:e52228.
https://doi.org/10.7554/eLife.52228

Share this article

https://doi.org/10.7554/eLife.52228

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.