Abstract

Proliferating cells must coordinate central metabolism with the cell cycle. How central energy metabolism regulates bacterial cell cycle functions is not well understood. Our forward genetic selection unearthed the Krebs cycle enzyme citrate synthase (CitA) as a checkpoint regulator controlling the G1→S transition in the polarized alpha-proteobacterium Caulobacter crescentus, a model for cell cycle regulation and asymmetric cell division. We find that loss of CitA promotes the accumulation of active CtrA, an essential cell cycle transcriptional regulator that maintains cells in G1-phase, provided that the (p)ppGpp alarmone is present. The enzymatic activity of CitA is dispensable for CtrA control and functional citrate synthase paralogs cannot replace CitA in promoting S-phase entry. Our evidence suggests that CitA was appropriated specifically to function as a moonlighting enzyme to link central energy metabolism with S-phase entry. Control of the G1-phase with a central metabolic enzyme may be a common mechanism of cellular regulation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Tn-seq and metabolomics data.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matthieu Bergé

    Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
    For correspondence
    matthieu.berge@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0910-6114
  2. Julian Pezzatti

    Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Víctor González-Ruiz

    Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence Degeorges

    Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Geneviève Mottet-Osman

    Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Serge Rudaz

    Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick H Viollier

    Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
    For correspondence
    patrick.viollier@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5249-9910

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_182576)

  • Patrick H Viollier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Received: September 27, 2019
  2. Accepted: March 4, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: March 20, 2020 (version 2)

Copyright

© 2020, Bergé et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,611
    views
  • 363
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthieu Bergé
  2. Julian Pezzatti
  3. Víctor González-Ruiz
  4. Laurence Degeorges
  5. Geneviève Mottet-Osman
  6. Serge Rudaz
  7. Patrick H Viollier
(2020)
Bacterial cell cycle control by citrate synthase independent of enzymatic activity
eLife 9:e52272.
https://doi.org/10.7554/eLife.52272

Share this article

https://doi.org/10.7554/eLife.52272

Further reading

    1. Cancer Biology
    2. Cell Biology
    Mengya Zhao, Beiying Dai ... Yijun Chen
    Research Article

    Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.

    1. Cell Biology
    2. Genetics and Genomics
    Yangzi Zhao, Lijun Ren ... Zhukuan Cheng
    Research Article

    Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.