Fully automated, sequential focused ion beam milling for cryo-electron tomography

  1. Tobias Zachs
  2. Andreas Schertel
  3. João Medeiros
  4. Gregor L Weiss
  5. Jannik Hugener
  6. Joao Matos
  7. Martin Pilhofer  Is a corresponding author
  1. ETH Zürich, Switzerland
  2. Carl Zeiss Microscopy GmbH, Germany

Abstract

Cryo-electron tomography (cryoET) has become a powerful technique at the interface of structural biology and cell biology, due to its unique ability for imaging cells in their native state and determining structures of macromolecular complexes in their cellular context. A limitation of cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam (cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET. Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here we report a method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram averaging. Since our method reduces the time required for lamella preparation and minimizes the need for user input, we envision the technique will render previously inaccessible projects feasible.

Data availability

The tomography data are deposited at EMDB/EMPIAR.EMPIAR-10376, EMD-10707, EMD-10708, EMD-10710

The following data sets were generated

Article and author information

Author details

  1. Tobias Zachs

    Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreas Schertel

    Zeiss Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. João Medeiros

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9075-548X
  4. Gregor L Weiss

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jannik Hugener

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Joao Matos

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3754-3709
  7. Martin Pilhofer

    Department of Biology, ETH Zürich, Zürich, Switzerland
    For correspondence
    pilhofer@biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3649-3340

Funding

Swiss National Science Foundation (#31003A_179255)

  • Martin Pilhofer

European Research Council (#679209)

  • Martin Pilhofer

Nomis Foundation (nd)

  • Martin Pilhofer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: September 28, 2019
  2. Accepted: March 7, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: March 19, 2020 (version 2)

Copyright

© 2020, Zachs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,594
    views
  • 796
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Zachs
  2. Andreas Schertel
  3. João Medeiros
  4. Gregor L Weiss
  5. Jannik Hugener
  6. Joao Matos
  7. Martin Pilhofer
(2020)
Fully automated, sequential focused ion beam milling for cryo-electron tomography
eLife 9:e52286.
https://doi.org/10.7554/eLife.52286

Share this article

https://doi.org/10.7554/eLife.52286

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.