Fully automated, sequential focused ion beam milling for cryo-electron tomography

  1. Tobias Zachs
  2. Andreas Schertel
  3. João Medeiros
  4. Gregor L Weiss
  5. Jannik Hugener
  6. Joao Matos
  7. Martin Pilhofer  Is a corresponding author
  1. ETH Zürich, Switzerland
  2. Carl Zeiss Microscopy GmbH, Germany

Abstract

Cryo-electron tomography (cryoET) has become a powerful technique at the interface of structural biology and cell biology, due to its unique ability for imaging cells in their native state and determining structures of macromolecular complexes in their cellular context. A limitation of cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam (cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET. Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here we report a method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram averaging. Since our method reduces the time required for lamella preparation and minimizes the need for user input, we envision the technique will render previously inaccessible projects feasible.

Data availability

The tomography data are deposited at EMDB/EMPIAR.EMPIAR-10376, EMD-10707, EMD-10708, EMD-10710

The following data sets were generated

Article and author information

Author details

  1. Tobias Zachs

    Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreas Schertel

    Zeiss Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. João Medeiros

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9075-548X
  4. Gregor L Weiss

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jannik Hugener

    Department of Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Joao Matos

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3754-3709
  7. Martin Pilhofer

    Department of Biology, ETH Zürich, Zürich, Switzerland
    For correspondence
    pilhofer@biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3649-3340

Funding

Swiss National Science Foundation (#31003A_179255)

  • Martin Pilhofer

European Research Council (#679209)

  • Martin Pilhofer

Nomis Foundation (nd)

  • Martin Pilhofer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: September 28, 2019
  2. Accepted: March 7, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: March 19, 2020 (version 2)

Copyright

© 2020, Zachs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,884
    Page views
  • 737
    Downloads
  • 54
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Zachs
  2. Andreas Schertel
  3. João Medeiros
  4. Gregor L Weiss
  5. Jannik Hugener
  6. Joao Matos
  7. Martin Pilhofer
(2020)
Fully automated, sequential focused ion beam milling for cryo-electron tomography
eLife 9:e52286.
https://doi.org/10.7554/eLife.52286

Further reading

    1. Structural Biology and Molecular Biophysics
    Meng Shi, Jiaqi Zhao ... Song Xiang
    Research Article Updated

    The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1–Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD–Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6’s enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.

    1. Structural Biology and Molecular Biophysics
    Abhilash Padavannil, Anjaneyulu Murari ... James A Letts
    Research Article

    Respiratory complex I is a proton-pumping oxidoreductase key to bioenergetic metabolism. Biochemical studies have found a divide in the behavior of complex I in metazoans that aligns with the evolutionary split between Protostomia and Deuterostomia. Complex I from Deuterostomia including mammals can adopt a biochemically defined off-pathway ‘deactive’ state, whereas complex I from Protostomia cannot. The presence of off-pathway states complicates the interpretation of structural results and has led to considerable mechanistic debate. Here, we report the structure of mitochondrial complex I from the thoracic muscles of the model protostome Drosophila melanogaster. We show that although D. melanogaster complex I (Dm-CI) does not have a NEM-sensitive deactive state, it does show slow activation kinetics indicative of an off-pathway resting state. The resting-state structure of Dm-CI from the thoracic muscle reveals multiple conformations. We identify a helix-locked state in which an N-terminal α-helix on the NDUFS4 subunit wedges between the peripheral and membrane arms. Comparison of the Dm-CI structure and conformational states to those observed in bacteria, yeast, and mammals provides insight into the roles of subunits across organisms, explains why the Dm-CI off-pathway resting state is NEM insensitive, and raises questions regarding current mechanistic models of complex I turnover.