The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition

  1. Chengdong Liu
  2. Shuang Li
  3. Pernille Rimmer Noer
  4. Kasper Kjaer-Sorensen
  5. Anna Karina Juhl
  6. Allison Goldstein
  7. Caihuan Ke
  8. Claus Oxvig  Is a corresponding author
  9. Cunming Duan  Is a corresponding author
  1. University of Michigan, United States
  2. Aarhus University, Denmark
  3. Xiamen University, China

Abstract

Human patients carrying PAPP‐A2 inactivating mutations have low bone mineral density. The underlying mechanisms for this reduced calcification are poorly understood. Using a zebrafish model, we report that Papp-aa regulates bone calcification by promoting Ca2+-transporting epithelial cell (ionocyte) quiescence-proliferation transition. Ionocytes, which are normally quiescent, re-enter the cell cycle under low [Ca2+] stress. Genetic deletion of Papp-aa, but not the closely related Papp-ab, abolished ionocyte proliferation and reduced calcified bone mass. Loss of Papp-aa expression or activity resulted in diminished IGF1 receptor-Akt-Tor signaling in ionocytes. Under low Ca2+ stress, Papp-aa cleaved Igfbp5a. Under normal conditions, however, Papp-aa proteinase activity was suppressed and IGFs were sequestered in the IGF/Igfbp complex. Pharmacological disruption of the IGF/Igfbp complex or adding free IGF1 activated IGF signaling and promoted ionocyte proliferation. These findings suggest that Papp-aa-mediated local Igfbp5a cleavage functions as a [Ca2+]-regulated molecular switch linking IGF signaling to bone calcification by stimulating epithelial cell quiescence-proliferation transition under low Ca2+ stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chengdong Liu

    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuang Li

    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pernille Rimmer Noer

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Kasper Kjaer-Sorensen

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Karina Juhl

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Allison Goldstein

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caihuan Ke

    College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Claus Oxvig

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    For correspondence
    co@mb.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  9. Cunming Duan

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    cduan@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6794-2762

Funding

National Science Foundation (IOS-1557850)

  • Cunming Duan

Lundbeck (Grant R317-2019-526)

  • Claus Oxvig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with the guidelines approved by the Institutional Committee on the Use and Care of Animals, University of Michigan and the Danish The Animal Experiments Inspectorate (permit numbers 2017-15-0201-01369 and 2017-15-0202-00098).

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,362
    views
  • 230
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chengdong Liu
  2. Shuang Li
  3. Pernille Rimmer Noer
  4. Kasper Kjaer-Sorensen
  5. Anna Karina Juhl
  6. Allison Goldstein
  7. Caihuan Ke
  8. Claus Oxvig
  9. Cunming Duan
(2020)
The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition
eLife 9:e52322.
https://doi.org/10.7554/eLife.52322

Share this article

https://doi.org/10.7554/eLife.52322

Further reading

    1. Developmental Biology
    Pénélope Tignard, Karen Pottin ... Marie Anne Breau
    Research Article

    Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.