The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition

  1. Chengdong Liu
  2. Shuang Li
  3. Pernille Rimmer Noer
  4. Kasper Kjaer-Sorensen
  5. Anna Karina Juhl
  6. Allison Goldstein
  7. Caihuan Ke
  8. Claus Oxvig  Is a corresponding author
  9. Cunming Duan  Is a corresponding author
  1. University of Michigan, United States
  2. Aarhus University, Denmark
  3. Xiamen University, China

Abstract

Human patients carrying PAPP‐A2 inactivating mutations have low bone mineral density. The underlying mechanisms for this reduced calcification are poorly understood. Using a zebrafish model, we report that Papp-aa regulates bone calcification by promoting Ca2+-transporting epithelial cell (ionocyte) quiescence-proliferation transition. Ionocytes, which are normally quiescent, re-enter the cell cycle under low [Ca2+] stress. Genetic deletion of Papp-aa, but not the closely related Papp-ab, abolished ionocyte proliferation and reduced calcified bone mass. Loss of Papp-aa expression or activity resulted in diminished IGF1 receptor-Akt-Tor signaling in ionocytes. Under low Ca2+ stress, Papp-aa cleaved Igfbp5a. Under normal conditions, however, Papp-aa proteinase activity was suppressed and IGFs were sequestered in the IGF/Igfbp complex. Pharmacological disruption of the IGF/Igfbp complex or adding free IGF1 activated IGF signaling and promoted ionocyte proliferation. These findings suggest that Papp-aa-mediated local Igfbp5a cleavage functions as a [Ca2+]-regulated molecular switch linking IGF signaling to bone calcification by stimulating epithelial cell quiescence-proliferation transition under low Ca2+ stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chengdong Liu

    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuang Li

    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pernille Rimmer Noer

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Kasper Kjaer-Sorensen

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Karina Juhl

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Allison Goldstein

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caihuan Ke

    College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Claus Oxvig

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    For correspondence
    co@mb.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  9. Cunming Duan

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    cduan@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6794-2762

Funding

National Science Foundation (IOS-1557850)

  • Cunming Duan

Lundbeck (Grant R317-2019-526)

  • Claus Oxvig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with the guidelines approved by the Institutional Committee on the Use and Care of Animals, University of Michigan and the Danish The Animal Experiments Inspectorate (permit numbers 2017-15-0201-01369 and 2017-15-0202-00098).

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,446
    views
  • 239
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chengdong Liu
  2. Shuang Li
  3. Pernille Rimmer Noer
  4. Kasper Kjaer-Sorensen
  5. Anna Karina Juhl
  6. Allison Goldstein
  7. Caihuan Ke
  8. Claus Oxvig
  9. Cunming Duan
(2020)
The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition
eLife 9:e52322.
https://doi.org/10.7554/eLife.52322

Share this article

https://doi.org/10.7554/eLife.52322

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Simon Rethemeier, Sonja Fritzsche ... Vera S Hunnekuhl
    Research Article

    The insect brain and the timing of its development underwent evolutionary adaptations. However, little is known about the underlying developmental processes. The central complex of the brain is an excellent model to understand neural development and divergence. It is produced in large parts by type II neuroblasts, which produce intermediate progenitors, another type of cycling precursor, to increase their neural progeny. Type II neuroblasts lineages are believed to be conserved among insects, but little is known on their molecular characteristics in insects other than flies. Tribolium castaneum has emerged as a model for brain development and evolution. However, type II neuroblasts have so far not been studied in this beetle. We created a fluorescent enhancer trap marking expression of Tc-fez/earmuff, a key marker for intermediate progenitors. Using combinatorial labeling of further markers, including Tc-pointed, we characterized embryonic type II neuroblast lineages. Intriguingly, we found nine lineages per hemisphere in the Tribolium embryo while Drosophila produces only eight per brain hemisphere. These embryonic lineages are significantly larger in Tribolium than they are in Drosophila and contain more intermediate progenitors. Finally, we mapped these lineages to the domains of head patterning genes. Notably, Tc-otd is absent from all type II neuroblasts and intermediate progenitors, whereas Tc-six3 marks an anterior subset of the type II lineages. Tc-six4 specifically marks the territory where anterior-medial type II neuroblasts differentiate. In conclusion, we identified a conserved pattern of gene expression in holometabolan central complex forming type II neuroblast lineages, and conserved head patterning genes emerged as new candidates for conferring spatial identity to individual lineages. The higher number and greater lineage size of the embryonic type II neuroblasts in the beetle correlate with a previously described embryonic phase of central complex formation. These findings stipulate further research on the link between stem cell activity and temporal and structural differences in central complex development.

    1. Cell Biology
    2. Developmental Biology
    Jeet H Patel, Mary C Mullins
    Insight

    Disease-causing mutations in the signaling protein BMP4 impair its secretion, but only when it is made as a homodimer.