A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking

  1. Katherine J Susa
  2. Tom CM Seegar
  3. Stephen C Blacklow  Is a corresponding author
  4. Andrew C Kruse  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard, United States

Abstract

CD81 and its binding partner CD19 are core subunits of the B cell co-receptor complex. While CD19 belongs to the extensively studied Ig superfamily, CD81 belongs to a poorly understood family of four-pass transmembrane proteins called tetraspanins. Tetraspanins play important physiological roles by controlling protein trafficking and other processes. Here, we show that CD81 relies on its ectodomain to traffic CD19 to the cell surface. Moreover, the anti-CD81 antibody 5A6, which binds selectively to activated B cells, recognizes a conformational epitope on CD81 that is masked when CD81 is bound to CD19. Mutations of CD81 in this interface suppress its CD19 export activity. These data indicate that the CD81 - CD19 interaction is dynamically regulated upon B cell activation and this dynamism can be exploited to regulate B cell function. These results are not only valuable for understanding B cell biology, but also have important implications for understanding tetraspanin function generally.

Data availability

Diffraction data and refined coordinates have been deposited in the Protein Data Bank under accession code 6U9S.

The following data sets were generated

Article and author information

Author details

  1. Katherine J Susa

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Tom CM Seegar

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Stephen C Blacklow

    Department of Biological Chemistry and Molecular Pharmacology, Harvard, Boston, United States
    For correspondence
    stephen_blacklow@hms.harvard.edu
    Competing interests
    Stephen C Blacklow, S.C.B. receives funding for an unrelated project from Novartis, and is a consultant for IFM and Ayala Pharmaceuticals for unrelated projects..
  4. Andrew C Kruse

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    Andrew_Kruse@hms.harvard.edu
    Competing interests
    Andrew C Kruse, A.C.K. is a consultant on unrelated projects for the Institute for Protein Innovation, a non-profit research institute..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1467-1222

Funding

National Institutes of Health (R35 CA220340)

  • Stephen C Blacklow

National Institutes of Health (F31 HL147459)

  • Katherine J Susa

National Institutes of Health (DP5 OD02134)

  • Andrew C Kruse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: A leuko-reduction collar was obtained from the Brigham and Women's Hospital Crimson Core with patient information de-identified. All methods were carried out in accordance with relevant guidelines and regulations. All experimental protocols were reviewed and approved as exempt by the Harvard Faculty of Medicine Institutional Review Board.

Copyright

© 2020, Susa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,128
    views
  • 872
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine J Susa
  2. Tom CM Seegar
  3. Stephen C Blacklow
  4. Andrew C Kruse
(2020)
A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking
eLife 9:e52337.
https://doi.org/10.7554/eLife.52337

Share this article

https://doi.org/10.7554/eLife.52337

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.