A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking

  1. Katherine J Susa
  2. Tom CM Seegar
  3. Stephen C Blacklow  Is a corresponding author
  4. Andrew C Kruse  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard, United States

Abstract

CD81 and its binding partner CD19 are core subunits of the B cell co-receptor complex. While CD19 belongs to the extensively studied Ig superfamily, CD81 belongs to a poorly understood family of four-pass transmembrane proteins called tetraspanins. Tetraspanins play important physiological roles by controlling protein trafficking and other processes. Here, we show that CD81 relies on its ectodomain to traffic CD19 to the cell surface. Moreover, the anti-CD81 antibody 5A6, which binds selectively to activated B cells, recognizes a conformational epitope on CD81 that is masked when CD81 is bound to CD19. Mutations of CD81 in this interface suppress its CD19 export activity. These data indicate that the CD81 - CD19 interaction is dynamically regulated upon B cell activation and this dynamism can be exploited to regulate B cell function. These results are not only valuable for understanding B cell biology, but also have important implications for understanding tetraspanin function generally.

Data availability

Diffraction data and refined coordinates have been deposited in the Protein Data Bank under accession code 6U9S.

The following data sets were generated

Article and author information

Author details

  1. Katherine J Susa

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Tom CM Seegar

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Stephen C Blacklow

    Department of Biological Chemistry and Molecular Pharmacology, Harvard, Boston, United States
    For correspondence
    stephen_blacklow@hms.harvard.edu
    Competing interests
    Stephen C Blacklow, S.C.B. receives funding for an unrelated project from Novartis, and is a consultant for IFM and Ayala Pharmaceuticals for unrelated projects..
  4. Andrew C Kruse

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    Andrew_Kruse@hms.harvard.edu
    Competing interests
    Andrew C Kruse, A.C.K. is a consultant on unrelated projects for the Institute for Protein Innovation, a non-profit research institute..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1467-1222

Funding

National Institutes of Health (R35 CA220340)

  • Stephen C Blacklow

National Institutes of Health (F31 HL147459)

  • Katherine J Susa

National Institutes of Health (DP5 OD02134)

  • Andrew C Kruse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: A leuko-reduction collar was obtained from the Brigham and Women's Hospital Crimson Core with patient information de-identified. All methods were carried out in accordance with relevant guidelines and regulations. All experimental protocols were reviewed and approved as exempt by the Harvard Faculty of Medicine Institutional Review Board.

Copyright

© 2020, Susa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,585
    views
  • 820
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine J Susa
  2. Tom CM Seegar
  3. Stephen C Blacklow
  4. Andrew C Kruse
(2020)
A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking
eLife 9:e52337.
https://doi.org/10.7554/eLife.52337

Share this article

https://doi.org/10.7554/eLife.52337

Further reading

    1. Biochemistry and Chemical Biology
    Shu-Ting Zhang, Shi-Kai Deng ... Ning-Yi Zhou
    Research Article

    1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate Pseudomonas sp. strain JS3066, determine the structure and mechanism of the enzyme NpaA1 that catalyzes the initial reaction, and reveal how the pathway evolved. From genetic and enzymatic analysis, a five gene-cluster encoding a dioxygenase system was determined to be responsible for the initial steps in 1NA degradation through glutamylation of 1NA. The γ-glutamylated 1NA was subsequently oxidized to 1,2-dihydroxynaphthalene which was further degraded by the well-established pathway of naphthalene degradation via catechol. A glutamine synthetase-like (GS-like) enzyme (NpaA1) initiates 1NA glutamylation, and this enzyme exhibits a broad substrate selectivity toward a variety of anilines and naphthylamine derivatives. Structural analysis revealed that the aromatic residues in the 1NA entry tunnel and the V201 site in the large substrate-binding pocket significantly influence NpaA1’s substrate preferences. The findings enhance understanding of degrading polycyclic aromatic amines, and will also enable the application of bioremediation at naphthylamine contaminated sites.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.