Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity

  1. Erin A Clark  Is a corresponding author
  2. Michael Rutlin
  3. Lucia Capano
  4. Samuel Aviles
  5. Jordan R Saadon
  6. Praveen Taneja
  7. Qiyu Zhang
  8. James B Bullis
  9. Timothy Lauer
  10. Emma Myers
  11. Anton Schulmann
  12. Douglas Forrest
  13. Sacha B Nelson  Is a corresponding author
  1. Brandeis University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. National Institutes of Health, NIDDK, United States

Abstract

Retinoic Acid-Related Orphan Receptor Beta (RORβ) is a transcription factor (TF) and marker of layer 4 (L4) neurons, which are distinctive both in transcriptional identity and the ability to form aggregates such as barrels in rodent somatosensory cortex. However, the relationship between transcriptional identity and L4 cytoarchitecture is largely unknown. We find RORβ is required in the cortex for L4 aggregation into barrels and thalamocortical afferent (TCA) segregation. Interestingly, barrel organization also degrades with age in wildtype mice. Loss of RORβ delays excitatory input and disrupts gene expression and chromatin accessibility, with down-regulation of L4 and up-regulation of L5 genes, suggesting a disruption in cellular specification. Expression and binding site accessibility change for many other TFs, including closure of neurodevelopmental TF binding sites and increased expression and binding capacity of activity-regulated TFs. Lastly, a putative target of RORβ, Thsd7a, is down-regulated without RORβ, and Thsd7a knock-out alone disrupts TCA organization in adult barrels.

Data availability

Raw and processed RNA-seq and ATAC-seq files are available at GEO accession GSE138001.

The following data sets were generated

Article and author information

Author details

  1. Erin A Clark

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    eaclark@brandeis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4013-325X
  2. Michael Rutlin

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Lucia Capano

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3470-9360
  4. Samuel Aviles

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Jordan R Saadon

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. Praveen Taneja

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Qiyu Zhang

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7141-4046
  8. James B Bullis

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  9. Timothy Lauer

    Department of Biology, Brandeis University, Brandeis University, United States
    Competing interests
    No competing interests declared.
  10. Emma Myers

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  11. Anton Schulmann

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  12. Douglas Forrest

    Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, Bethesda, United States
    Competing interests
    No competing interests declared.
  13. Sacha B Nelson

    Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0108-8599

Funding

National Institute of Neurological Disorders and Stroke (NS109916)

  • Erin A Clark
  • Michael Rutlin
  • Lucia Capano
  • Samuel Aviles
  • Jordan R Saadon
  • Praveen Taneja
  • Qiyu Zhang
  • James B Bullis
  • Timothy Lauer
  • Emma Myers
  • Anton Schulmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with the requirements ofthe Institutional Animal Care and Use Committees at Brandeis University (protocol #17001).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,526
    views
  • 276
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin A Clark
  2. Michael Rutlin
  3. Lucia Capano
  4. Samuel Aviles
  5. Jordan R Saadon
  6. Praveen Taneja
  7. Qiyu Zhang
  8. James B Bullis
  9. Timothy Lauer
  10. Emma Myers
  11. Anton Schulmann
  12. Douglas Forrest
  13. Sacha B Nelson
(2020)
Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity
eLife 9:e52370.
https://doi.org/10.7554/eLife.52370

Share this article

https://doi.org/10.7554/eLife.52370

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.