The hippocampus encodes delay and value information during delay-discounting decision making

  1. Akira Masuda  Is a corresponding author
  2. Chie Sano
  3. Qi Zhang
  4. Hiromichi Goto
  5. Thomas J McHugh
  6. Shigeyoshi Fujisawa
  7. Shigeyoshi Itohara  Is a corresponding author
  1. Doshisha University, Japan
  2. RIKEN Center for Brain Science, Japan
  3. University of Tsukuba, Japan

Abstract

The hippocampus, a region critical for memory and spatial navigation, has been implicated in delay discounting, the decline in subjective reward value when a delay is imposed. However, how delay information is encoded in the hippocampus is poorly understood. Here we recorded from CA1 of mice performing a delay-discounting decision-making task, where delay lengths, delay positions, and reward amounts were changed across sessions, and identified subpopulations of CA1 neurons which increased or decreased their firing rate during long delays. The activity of both delay-active and -suppressive cells reflected delay length, delay position, and reward amount; however manipulating reward amount differentially impacted the two populations, suggesting distinct roles in the valuation process. Further, genetic deletion of NMDA receptor in hippocampal pyramidal cells impaired delay-discount behavior and diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of hippocampal neurons concertedly support delay-discounting decisions in a manner dependent on NMDA receptor function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Akira Masuda

    Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
    For correspondence
    amasuda@mail.doshisha.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8659-6356
  2. Chie Sano

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi Zhang

    Faculty of Human Science, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiromichi Goto

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas J McHugh

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shigeyoshi Fujisawa

    Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Shigeyoshi Itohara

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    For correspondence
    shigeyoshi.itohara@riken.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (16K15196)

  • Akira Masuda

Japan Agency for Medical Research and Development (Brain/MINDS)

  • Shigeyoshi Fujisawa

Uehara Memorial Foundation

  • Akira Masuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. The study was approved by the Institutional Animal Care and Use Committee of the RIKEN Institute in Wako (approval number H27-2-239(6)), in conformity with Article 24 of the RIKEN regulations for animal experiments. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Matthijs (Matt) van der Meer

Version history

  1. Received: October 4, 2019
  2. Accepted: February 19, 2020
  3. Accepted Manuscript published: February 20, 2020 (version 1)
  4. Version of Record published: March 2, 2020 (version 2)

Copyright

© 2020, Masuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,039
    Page views
  • 484
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Masuda
  2. Chie Sano
  3. Qi Zhang
  4. Hiromichi Goto
  5. Thomas J McHugh
  6. Shigeyoshi Fujisawa
  7. Shigeyoshi Itohara
(2020)
The hippocampus encodes delay and value information during delay-discounting decision making
eLife 9:e52466.
https://doi.org/10.7554/eLife.52466

Further reading

    1. Neuroscience
    Jiajie Zou, Yuran Zhang ... Nai Ding
    Research Article

    The computational principles underlying attention allocation in complex goal-directed tasks remain elusive. Goal-directed reading, that is, reading a passage to answer a question in mind, is a common real-world task that strongly engages attention. Here, we investigate what computational models can explain attention distribution in this complex task. We show that the reading time on each word is predicted by the attention weights in transformer-based deep neural networks (DNNs) optimized to perform the same reading task. Eye tracking further reveals that readers separately attend to basic text features and question-relevant information during first-pass reading and rereading, respectively. Similarly, text features and question relevance separately modulate attention weights in shallow and deep DNN layers. Furthermore, when readers scan a passage without a question in mind, their reading time is predicted by DNNs optimized for a word prediction task. Therefore, we offer a computational account of how task optimization modulates attention distribution during real-world reading.

    1. Neuroscience
    Christian Brodbeck, Proloy Das ... Jonathan Z Simon
    Tools and Resources

    Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.