The hippocampus encodes delay and value information during delay-discounting decision making

  1. Akira Masuda  Is a corresponding author
  2. Chie Sano
  3. Qi Zhang
  4. Hiromichi Goto
  5. Thomas J McHugh
  6. Shigeyoshi Fujisawa
  7. Shigeyoshi Itohara  Is a corresponding author
  1. Doshisha University, Japan
  2. RIKEN Center for Brain Science, Japan
  3. University of Tsukuba, Japan

Abstract

The hippocampus, a region critical for memory and spatial navigation, has been implicated in delay discounting, the decline in subjective reward value when a delay is imposed. However, how delay information is encoded in the hippocampus is poorly understood. Here we recorded from CA1 of mice performing a delay-discounting decision-making task, where delay lengths, delay positions, and reward amounts were changed across sessions, and identified subpopulations of CA1 neurons which increased or decreased their firing rate during long delays. The activity of both delay-active and -suppressive cells reflected delay length, delay position, and reward amount; however manipulating reward amount differentially impacted the two populations, suggesting distinct roles in the valuation process. Further, genetic deletion of NMDA receptor in hippocampal pyramidal cells impaired delay-discount behavior and diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of hippocampal neurons concertedly support delay-discounting decisions in a manner dependent on NMDA receptor function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Akira Masuda

    Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
    For correspondence
    amasuda@mail.doshisha.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8659-6356
  2. Chie Sano

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi Zhang

    Faculty of Human Science, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiromichi Goto

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas J McHugh

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shigeyoshi Fujisawa

    Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Shigeyoshi Itohara

    Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
    For correspondence
    shigeyoshi.itohara@riken.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (16K15196)

  • Akira Masuda

Japan Agency for Medical Research and Development (Brain/MINDS)

  • Shigeyoshi Fujisawa

Uehara Memorial Foundation

  • Akira Masuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. The study was approved by the Institutional Animal Care and Use Committee of the RIKEN Institute in Wako (approval number H27-2-239(6)), in conformity with Article 24 of the RIKEN regulations for animal experiments. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Masuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,431
    views
  • 536
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Masuda
  2. Chie Sano
  3. Qi Zhang
  4. Hiromichi Goto
  5. Thomas J McHugh
  6. Shigeyoshi Fujisawa
  7. Shigeyoshi Itohara
(2020)
The hippocampus encodes delay and value information during delay-discounting decision making
eLife 9:e52466.
https://doi.org/10.7554/eLife.52466

Share this article

https://doi.org/10.7554/eLife.52466

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Neuroscience
    Markus R Tünte, Stefanie Hoehl ... Ezgi Kayhan
    Research Advance

    Several recent theoretical accounts have posited that interoception, the perception of internal bodily signals, plays a vital role in early human development. Yet, empirical evidence of cardiac interoceptive sensitivity in infants to date has been mixed. Furthermore, existing evidence does not go beyond the perception of cardiac signals and focuses only on the age of 5–7 mo, limiting the generalizability of the results. Here, we used a modified version of the cardiac interoceptive sensitivity paradigm introduced by Maister et al., 2017 in 3-, 9-, and 18-mo-old infants using cross-sectional and longitudinal approaches. Going beyond, we introduce a novel experimental paradigm, namely the iBREATH, to investigate respiratory interoceptive sensitivity in infants. Overall, for cardiac interoceptive sensitivity (total n=135) we find rather stable evidence across ages with infants on average preferring stimuli presented synchronously to their heartbeat. For respiratory interoceptive sensitivity (total n=120) our results show a similar pattern in the first year of life, but not at 18 mo. We did not observe a strong relationship between cardiac and respiratory interoceptive sensitivity at 3 and 9 mo but found some evidence for a relationship at 18 mo. We validated our results using specification curve- and mega-analytic approaches. By examining early cardiac and respiratory interoceptive processing, we provide evidence that infants are sensitive to their interoceptive signals.