Abstract

Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity removes Rlp24 from the GTPase Nog1 on the pre-60S; consequently, the C-terminal tail of Nog1 is extracted from the PET. These events enable Rei1 to probe PET integrity, and catalyze Arx1 release. Concomitantly, Nog1 eviction from the pre-60S permits peptidyl transferase center maturation, and Yvh1 to mediate Mrt4 release for stalk assembly. Thus, Nog1 co-ordinates assembly, maturation and quality control of distant functional centers during ribosome formation.

Data availability

The mass spectrometry data reported in this study has been deposited into the ProteomXchange Consortium via the PRIDE partner repository with dataset identifier PXD011382.

The following data sets were generated

Article and author information

Author details

  1. Purnima Klingauf-Nerurkar

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Ludovic C Gillet

    Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1001-3265
  3. Daniela Portugal-Calisto

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1591-5812
  4. Michaela Oplova

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0976-4341
  5. Martin Jäger

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Olga T Schubert

    Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2613-0714
  7. Agnese Pisano

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Cohue Peña

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Sanjana Rao

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Altvater

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Yiming Chang

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Ruedi Aebersold

    Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Vikram G Panse

    Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
    For correspondence
    vpanse@imm.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7950-5746

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Vikram G Panse

H2020 European Research Council (EURIBIO)

  • Vikram G Panse

Novartis Stiftung für Medizinisch-Biologische Forschung

  • Vikram G Panse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Klingauf-Nerurkar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,739
    views
  • 341
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Purnima Klingauf-Nerurkar
  2. Ludovic C Gillet
  3. Daniela Portugal-Calisto
  4. Michaela Oplova
  5. Martin Jäger
  6. Olga T Schubert
  7. Agnese Pisano
  8. Cohue Peña
  9. Sanjana Rao
  10. Martin Altvater
  11. Yiming Chang
  12. Ruedi Aebersold
  13. Vikram G Panse
(2020)
The GTPase Nog1 co-ordinates assembly, maturation and quality control of distant ribosomal functional centers
eLife 9:e52474.
https://doi.org/10.7554/eLife.52474

Share this article

https://doi.org/10.7554/eLife.52474

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.