Abstract

Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies.

Data availability

The accession number for the RNA-seq and ATAC-seq data is GSE138762.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chen Dong

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Mariana Beltcheva

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Paul Gontarz

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Bo Zhang

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Pooja Popli

    Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Laura A Fischer

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Shafqat A Khan

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Kyoung-mi Park

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  9. Eun-Ja Yoon

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  10. Xiaoyun Xing

    Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  11. Ramakrishna Kommagani

    Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0403-0971
  12. Ting Wang

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  13. Lilianna Solnica-Krezel

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    Lilianna Solnica-Krezel, Reviewing editor, eLife.
  14. Thorold W Theunissen

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    For correspondence
    t.theunissen@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6943-7858

Funding

Children's Discovery Institute (CDI-LI-2019-819)

  • Lilianna Solnica-Krezel
  • Thorold W Theunissen

McDonnell Center for Cellular and Molecular Neurobiology (22-3930-26275D)

  • Thorold W Theunissen

NIH Director's New Innovator Award (DP2 GM137418)

  • Thorold W Theunissen

Shipley Foundation Program for Innovation in Stem Cell Science

  • Thorold W Theunissen

Edward Mallinckrodt Jr Foundation

  • Thorold W Theunissen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: October 6, 2019
  2. Accepted: February 11, 2020
  3. Accepted Manuscript published: February 12, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,283
    views
  • 1,887
    downloads
  • 209
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chen Dong
  2. Mariana Beltcheva
  3. Paul Gontarz
  4. Bo Zhang
  5. Pooja Popli
  6. Laura A Fischer
  7. Shafqat A Khan
  8. Kyoung-mi Park
  9. Eun-Ja Yoon
  10. Xiaoyun Xing
  11. Ramakrishna Kommagani
  12. Ting Wang
  13. Lilianna Solnica-Krezel
  14. Thorold W Theunissen
(2020)
Derivation of trophoblast stem cells from naïve human pluripotent stem cells
eLife 9:e52504.
https://doi.org/10.7554/eLife.52504

Share this article

https://doi.org/10.7554/eLife.52504

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.