Abstract

Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies.

Data availability

The accession number for the RNA-seq and ATAC-seq data is GSE138762.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chen Dong

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Mariana Beltcheva

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Paul Gontarz

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Bo Zhang

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Pooja Popli

    Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Laura A Fischer

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Shafqat A Khan

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Kyoung-mi Park

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  9. Eun-Ja Yoon

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  10. Xiaoyun Xing

    Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  11. Ramakrishna Kommagani

    Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0403-0971
  12. Ting Wang

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  13. Lilianna Solnica-Krezel

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    Lilianna Solnica-Krezel, Reviewing editor, eLife.
  14. Thorold W Theunissen

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    For correspondence
    t.theunissen@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6943-7858

Funding

Children's Discovery Institute (CDI-LI-2019-819)

  • Lilianna Solnica-Krezel
  • Thorold W Theunissen

McDonnell Center for Cellular and Molecular Neurobiology (22-3930-26275D)

  • Thorold W Theunissen

NIH Director's New Innovator Award (DP2 GM137418)

  • Thorold W Theunissen

Shipley Foundation Program for Innovation in Stem Cell Science

  • Thorold W Theunissen

Edward Mallinckrodt Jr Foundation

  • Thorold W Theunissen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,785
    views
  • 1,946
    downloads
  • 223
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chen Dong
  2. Mariana Beltcheva
  3. Paul Gontarz
  4. Bo Zhang
  5. Pooja Popli
  6. Laura A Fischer
  7. Shafqat A Khan
  8. Kyoung-mi Park
  9. Eun-Ja Yoon
  10. Xiaoyun Xing
  11. Ramakrishna Kommagani
  12. Ting Wang
  13. Lilianna Solnica-Krezel
  14. Thorold W Theunissen
(2020)
Derivation of trophoblast stem cells from naïve human pluripotent stem cells
eLife 9:e52504.
https://doi.org/10.7554/eLife.52504

Share this article

https://doi.org/10.7554/eLife.52504

Further reading

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.

    1. Stem Cells and Regenerative Medicine
    Wenxin Ma, Lian Zhao ... Wei Li
    Research Article

    Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.