1. Chromosomes and Gene Expression
  2. Evolutionary Biology
Download icon

The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog

  1. Antoine Hocher  Is a corresponding author
  2. Maria Rojec
  3. Jacob B Swadling
  4. Alexander Esin
  5. Tobias Warnecke  Is a corresponding author
  1. MRC London Institute of Medical Sciences (LMS), United Kingdom
Research Article
  • Cited 2
  • Views 1,154
  • Annotations
Cite this article as: eLife 2019;8:e52542 doi: 10.7554/eLife.52542

Abstract

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbours a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behaviour. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.

Article and author information

Author details

  1. Antoine Hocher

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    For correspondence
    a.hocher@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Rojec

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob B Swadling

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Esin

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tobias Warnecke

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    For correspondence
    tobias.warnecke@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4936-5428

Funding

Medical Research Council (MC_A658_5TY40)

  • Tobias Warnecke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph Thomas Wade, Wadsworth Center, New York State Department of Health, United States

Publication history

  1. Received: October 7, 2019
  2. Accepted: November 10, 2019
  3. Accepted Manuscript published: November 11, 2019 (version 1)
  4. Version of Record published: November 25, 2019 (version 2)

Copyright

© 2019, Hocher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,154
    Page views
  • 168
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Javier Antunez-Sanchez et al.
    Research Article

    Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.

    1. Chromosomes and Gene Expression
    Yulia Vasianovich et al.
    Research Article

    The templating RNA is the core of the telomerase reverse transcriptase. In Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly understood. Here, we use inducible RNA tagging experiments to show that immediately after transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122 plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging and challenge current models of telomerase maturation.