The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog

  1. Antoine Hocher  Is a corresponding author
  2. Maria Rojec
  3. Jacob B Swadling
  4. Alexander Esin
  5. Tobias Warnecke  Is a corresponding author
  1. MRC London Institute of Medical Sciences (LMS), United Kingdom

Abstract

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbours a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behaviour. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.

Data availability

All sequencing data generated for this study have been deposited in GEO under accession code GSE127728.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Antoine Hocher

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    For correspondence
    a.hocher@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Rojec

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob B Swadling

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Esin

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tobias Warnecke

    MRC London Institute of Medical Sciences (LMS), London, United Kingdom
    For correspondence
    tobias.warnecke@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4936-5428

Funding

Medical Research Council (MC_A658_5TY40)

  • Tobias Warnecke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Hocher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,236
    views
  • 262
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antoine Hocher
  2. Maria Rojec
  3. Jacob B Swadling
  4. Alexander Esin
  5. Tobias Warnecke
(2019)
The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog
eLife 8:e52542.
https://doi.org/10.7554/eLife.52542

Share this article

https://doi.org/10.7554/eLife.52542

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.