Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes

  1. Corinne von Känel
  2. Sergio A Muñoz-Gómez
  3. Silke Oeljeklaus
  4. Christoph Wenger
  5. Bettina Warscheid
  6. Jeremy G Wideman  Is a corresponding author
  7. Anke Harsman  Is a corresponding author
  8. Andre Schneider  Is a corresponding author
  1. University of Berne, Switzerland
  2. Arizona State University, United States
  3. University of Freiburg, Germany

Abstract

Many mitochondrial proteins contain N-terminal presequences that direct them to the organelle. The main driving force for their translocation across the inner membrane is provided by the presequence translocase-associated motor (PAM) which contains the J-protein Pam18. Here, we show that in the PAM of Trypanosoma brucei the function of Pam18 has been replaced by the non-orthologous euglenozoan-specific J-protein TbPam27. TbPam27 is specifically required for the import of mitochondrial presequence-containing but not for carrier proteins. Similar to yeast Pam18, TbPam27 requires an intact J-domain to function. Surprisingly, T. brucei still contains a bona fide Pam18 orthologue that, while essential for normal growth, is not involved in protein import. Thus, during evolution of kinetoplastids, Pam18 has been replaced by TbPam27. We propose that this replacement is linked to the transition from two ancestral and functionally distinct TIM complexes, found in most eukaryotes, to the single bifunctional TIM complex present in trypanosomes.

Data availability

All produced data are contained within the manuscript (e.g. Data Source files)

Article and author information

Author details

  1. Corinne von Känel

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sergio A Muñoz-Gómez

    Center for Mechanisms of Evolution, Arizona State University, Arizona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Silke Oeljeklaus

    Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christoph Wenger

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Bettina Warscheid

    Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5096-1975
  6. Jeremy G Wideman

    Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, United States
    For correspondence
    Jeremy.Wideman@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Anke Harsman

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    For correspondence
    anke.harsman@web.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Andre Schneider

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    For correspondence
    andre.schneider@dcb.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5421-0909

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (175563)

  • Andre Schneider

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR RNA and Disease)

  • Andre Schneider

ERC Consolidator grant (648235)

  • Bettina Warscheid

Deutsche Forschungsgemeinschaft (403222702/SFB 1381)

  • Bettina Warscheid

Germany's Excellence Strategy (CIBSS - EXC-2189 - Project ID 390939984)

  • Bettina Warscheid

Excellence Initiative of the German Federal and State Governments (EXC 294 BIOSS)

  • Bettina Warscheid

Peter und Traudl Engelhorn foundation

  • Anke Harsman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, von Känel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,293
    views
  • 192
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Corinne von Känel
  2. Sergio A Muñoz-Gómez
  3. Silke Oeljeklaus
  4. Christoph Wenger
  5. Bettina Warscheid
  6. Jeremy G Wideman
  7. Anke Harsman
  8. Andre Schneider
(2020)
Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes
eLife 9:e52560.
https://doi.org/10.7554/eLife.52560

Share this article

https://doi.org/10.7554/eLife.52560

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.