Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes

  1. Corinne von Känel
  2. Sergio A Muñoz-Gómez
  3. Silke Oeljeklaus
  4. Christoph Wenger
  5. Bettina Warscheid
  6. Jeremy G Wideman  Is a corresponding author
  7. Anke Harsman  Is a corresponding author
  8. Andre Schneider  Is a corresponding author
  1. University of Berne, Switzerland
  2. Arizona State University, United States
  3. University of Freiburg, Germany

Abstract

Many mitochondrial proteins contain N-terminal presequences that direct them to the organelle. The main driving force for their translocation across the inner membrane is provided by the presequence translocase-associated motor (PAM) which contains the J-protein Pam18. Here, we show that in the PAM of Trypanosoma brucei the function of Pam18 has been replaced by the non-orthologous euglenozoan-specific J-protein TbPam27. TbPam27 is specifically required for the import of mitochondrial presequence-containing but not for carrier proteins. Similar to yeast Pam18, TbPam27 requires an intact J-domain to function. Surprisingly, T. brucei still contains a bona fide Pam18 orthologue that, while essential for normal growth, is not involved in protein import. Thus, during evolution of kinetoplastids, Pam18 has been replaced by TbPam27. We propose that this replacement is linked to the transition from two ancestral and functionally distinct TIM complexes, found in most eukaryotes, to the single bifunctional TIM complex present in trypanosomes.

Data availability

All produced data are contained within the manuscript (e.g. Data Source files)

Article and author information

Author details

  1. Corinne von Känel

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sergio A Muñoz-Gómez

    Center for Mechanisms of Evolution, Arizona State University, Arizona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Silke Oeljeklaus

    Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christoph Wenger

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Bettina Warscheid

    Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5096-1975
  6. Jeremy G Wideman

    Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, United States
    For correspondence
    Jeremy.Wideman@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Anke Harsman

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    For correspondence
    anke.harsman@web.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Andre Schneider

    Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
    For correspondence
    andre.schneider@dcb.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5421-0909

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (175563)

  • Andre Schneider

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR RNA and Disease)

  • Andre Schneider

ERC Consolidator grant (648235)

  • Bettina Warscheid

Deutsche Forschungsgemeinschaft (403222702/SFB 1381)

  • Bettina Warscheid

Germany's Excellence Strategy (CIBSS - EXC-2189 - Project ID 390939984)

  • Bettina Warscheid

Excellence Initiative of the German Federal and State Governments (EXC 294 BIOSS)

  • Bettina Warscheid

Peter und Traudl Engelhorn foundation

  • Anke Harsman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, von Känel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,279
    views
  • 191
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Corinne von Känel
  2. Sergio A Muñoz-Gómez
  3. Silke Oeljeklaus
  4. Christoph Wenger
  5. Bettina Warscheid
  6. Jeremy G Wideman
  7. Anke Harsman
  8. Andre Schneider
(2020)
Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes
eLife 9:e52560.
https://doi.org/10.7554/eLife.52560

Share this article

https://doi.org/10.7554/eLife.52560

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.