p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle

  1. Hui Che
  2. Jie Li
  3. You Li
  4. Cheng Ma
  5. Huan Liu
  6. Jingyi Qin
  7. Jianghui Dong
  8. Zhen Zhang
  9. Cory J Xian
  10. Dengshun Miao
  11. Liping Wang  Is a corresponding author
  12. Yongxin Ren  Is a corresponding author
  1. The First Affiliated Hospital of Nanjing Medical University, China
  2. Xuzhou Central Hospital, China
  3. Chinese Academy of Sciences, China
  4. University of South Australia, Australia
  5. Nanjing Medical University, China

Abstract

Cell cycle regulator p16 is known a biomarker and an effector of aging. However, its function in intervertebral disc degeneration (IVDD) is unclear. In this study, p16 expression levels were found positively correlated with severity of human IVDD. In a mouse tail suspension (TS)-induced IVDD model, lumbar intervertebral disc height index and matrix protein expression levels were reduced significantly were largely rescued by p16 deletion. In TS mouse discs, reactive oxygen species levels, proportions of senescent cells, and senescence-associated secretory phenotype (SASP) were increased; cell cycling was delayed; and expression was downregulated for Sirt1, superoxide dismutase 1/2, cyclin-dependent kinases 4/6, phosphorylated retinoblastoma protein, and transcription factor E2F1/2. However, these effects were rescued by p16 deletion. Our results demonstrate that p16 plays an important role in IVDD pathogenesis and that its deletion attenuates IVDD by promoting cell cycling and inhibiting SASP, cell senescence, and oxidative stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hui Che

    Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3345-2033
  2. Jie Li

    Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. You Li

    Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Cheng Ma

    Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Huan Liu

    Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jingyi Qin

    Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jianghui Dong

    School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3961-1688
  8. Zhen Zhang

    School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Cory J Xian

    School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8467-2845
  10. Dengshun Miao

    Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Liping Wang

    School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
    For correspondence
    liping.wang@mymail.unisa.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9355-1167
  12. Yongxin Ren

    Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    For correspondence
    renyongxinjsph@163.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council (1158402)

  • Liping Wang

National Natural Science Foundation of China (81572149)

  • Dengshun Miao
  • Yongxin Ren

China Scholarship Council (CSC201908080215)

  • Hui Che

National Natural Science Foundation of China (81671928)

  • Cory J Xian
  • Liping Wang

National Health and Medical Research Council (1127396)

  • Cory J Xian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Animal use was approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (approval number: IACUC-1709021).

Human subjects: This work was implemented by the approval of the Ethics Committee of The First Affiliated Hospital of Nanjing Medical University (approval number: 2018-SR-233). Before the operation, the informed consents of the patients have been obtained, including the patient's voluntary donation of the diseased nucleus pulposus tissue extracted from the operation, and their consents that all specimens will be used for scientific research and the results obtained will be published in scientific journals.

Version history

  1. Received: October 8, 2019
  2. Accepted: February 12, 2020
  3. Accepted Manuscript published: March 3, 2020 (version 1)
  4. Version of Record published: March 11, 2020 (version 2)

Copyright

© 2020, Che et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,756
    views
  • 386
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Che
  2. Jie Li
  3. You Li
  4. Cheng Ma
  5. Huan Liu
  6. Jingyi Qin
  7. Jianghui Dong
  8. Zhen Zhang
  9. Cory J Xian
  10. Dengshun Miao
  11. Liping Wang
  12. Yongxin Ren
(2020)
p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle
eLife 9:e52570.
https://doi.org/10.7554/eLife.52570

Share this article

https://doi.org/10.7554/eLife.52570

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Immunology and Inflammation
    Hyereen Kang, Seong Woo Choi ... Myung-Shik Lee
    Research Article

    We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ERlysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.