Application of optogenetic Amyloid-β distinguishes between metabolic and physical damage in neurodegeneration

Abstract

The brains of Alzheimer's Disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer's Disease is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of Alzheimer's Disease. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chu Hsien Lim

    Science Division, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6691-8277
  2. Prameet Kaur

    Science Division, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Emelyne Teo

    NUS Graduate School for Integrative Sciences and Engineering, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5050-4109
  4. Vanessa Yuk Man Lam

    Science Division, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Fangchen Zhu

    Science Division, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline Kibat

    Science, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Gruber

    Science Division, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3329-3789
  8. Ajay S Mathuru

    Science, Yale-NUS College, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4591-5274
  9. Nicholas S Tolwinski

    Science Division, Yale-NUS College, Singapore, Singapore
    For correspondence
    nicholas.tolwinski@yale-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8507-2737

Funding

Ministry of Education Singapore (IG17-LR001)

  • Nicholas S Tolwinski

Ministry of Education Singapore (IG18-LR001)

  • Nicholas S Tolwinski

Ministry of Education Singapore (IG17-BS101)

  • Jan Gruber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Publication history

  1. Received: October 9, 2019
  2. Accepted: March 18, 2020
  3. Accepted Manuscript published: March 31, 2020 (version 1)
  4. Version of Record published: April 9, 2020 (version 2)

Copyright

© 2020, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,757
    Page views
  • 447
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chu Hsien Lim
  2. Prameet Kaur
  3. Emelyne Teo
  4. Vanessa Yuk Man Lam
  5. Fangchen Zhu
  6. Caroline Kibat
  7. Jan Gruber
  8. Ajay S Mathuru
  9. Nicholas S Tolwinski
(2020)
Application of optogenetic Amyloid-β distinguishes between metabolic and physical damage in neurodegeneration
eLife 9:e52589.
https://doi.org/10.7554/eLife.52589

Further reading

    1. Developmental Biology
    2. Neuroscience
    Eleni Chrysostomou et al.
    Research Article

    Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in-vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have a broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.

    1. Developmental Biology
    Noah P Mitchell et al.
    Research Article

    Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from sub-cellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calciumpulses triggermuscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer - revealing post-translational mechanisms that govern shape change.