Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity

Abstract

Exposure to early-life adversity (ELA) increases the risk for psychopathologies associated with amygdala-prefrontal cortex (PFC) circuits. While sex differences in vulnerability have been identified with a clear need for individualized intervention strategies, the neurobiological substrates of ELA-attributable differences remain unknown due to a paucity of translational investigations taking both development and sex into account. Male and female rats exposed to maternal separation ELA were analyzed with anterograde tracing from basolateral amygdala (BLA) to PFC to identify sex-specific innervation trajectories through juvenility (PD28) and adolescence (PD38;PD48). Resting-state functional connectivity (rsFC) was assessed longitudinally (PD28;PD48) in a separate cohort. All measures were related to anxiety-like behavior. ELA-exposed rats showed precocial maturation of BLA-PFC innervation, with females affected earlier than males. ELA also disrupted maturation of female rsFC, with enduring relationships between rsFC and anxiety-like behavior. This study is the first providing both anatomical and functional evidence for sex- and experience-dependent corticolimbic development.

Data availability

All data generated for Figures 1, 2, 3, 4, and S4 are provided as source data files. Data generated for Figures 5 and 6 will be made available once an ongoing additional analysis is completed for another research report.Data deposited to Dryad, doi:10.5061/dryad.jdfn2z371

The following data sets were generated

Article and author information

Author details

  1. Jennifer A Honeycutt

    Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
    For correspondence
    j.honeycutt@northeastern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4879-0203
  2. Camila Demaestri

    Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  3. Shayna Peterzell

    Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  4. Marisa M Silveri

    Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, United States
    Competing interests
    No competing interests declared.
  5. Xuezhu Cai

    Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  6. Praveen Kulkarni

    Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  7. Miles G Cunningham

    Laboratory for Neural Reconstruction, Department of Psychiatry, McLean Hospital, Belmont, United States
    Competing interests
    No competing interests declared.
  8. Craig F Ferris

    Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
    Competing interests
    Craig F Ferris, has a financial interest in Animal Imaging Research, the company that makes the rat imaging system.
  9. Heather C Brenhouse

    Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
    For correspondence
    h.brenhouse@neu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7591-4964

Funding

National Institute of Mental Health (1R01MH107556-01)

  • Shayna Peterzell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#19-0313R) of Northeastern University. The protocol was approved by the IACUC of Northeastern University (Animal Welfare #: D16-00095). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: October 11, 2019
  2. Accepted: January 17, 2020
  3. Accepted Manuscript published: January 20, 2020 (version 1)
  4. Version of Record published: February 10, 2020 (version 2)

Copyright

© 2020, Honeycutt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,562
    views
  • 540
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer A Honeycutt
  2. Camila Demaestri
  3. Shayna Peterzell
  4. Marisa M Silveri
  5. Xuezhu Cai
  6. Praveen Kulkarni
  7. Miles G Cunningham
  8. Craig F Ferris
  9. Heather C Brenhouse
(2020)
Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity
eLife 9:e52651.
https://doi.org/10.7554/eLife.52651

Share this article

https://doi.org/10.7554/eLife.52651

Further reading

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.