Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force

  1. Mor Farajian
  2. Raz Leib
  3. Hanna Kossowsky
  4. Tomer Zaidenberg
  5. Ferdinando A Mussa-Ivaldi
  6. Ilana Nisky  Is a corresponding author
  1. Ben-Gurion University of the Negev, Israel
  2. Northwestern University, United States

Abstract

When manipulating objects, we use kinesthetic and tactile information to form an internal representation of their mechanical properties for cognitive perception and for preventing their slippage using predictive control of grip force. A major challenge in understanding the dissociable contributions of tactile and kinesthetic information to perception and action is the natural coupling between them. Unlike previous studies that addressed this question by focusing on impaired sensory processing in patients or via local anesthesia, we used a behavioral study with a programmable mechatronic device that stretches the skin of the fingertips to address this issue in the intact sensorimotor system. We found that artificial skin-stretch increases the predictive grip force modulation in anticipation of the load force. Moreover, the stretch causes an immediate illusion of touching a harder object that does not depend on the gradual development of the predictive modulation of grip force.

Data availability

Our analysis code and data is available via GitHub, at https://github.com/bgu-SkinStretch/Farajian_et_al2020

Article and author information

Author details

  1. Mor Farajian

    Biomedical Engineering, Ben-Gurion University of the Negev, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Raz Leib

    Bio-medical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Hanna Kossowsky

    Bio-medical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomer Zaidenberg

    Bio-medical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ferdinando A Mussa-Ivaldi

    Department of Biomedical Engineering, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-7052
  6. Ilana Nisky

    Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
    For correspondence
    nisky@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4128-9771

Funding

Israel Science Foundation (823/15)

  • Ilana Nisky

National Science Foundation (1632259)

  • Ferdinando A Mussa-Ivaldi

United States-Israel Binational Science Foundation (2016850)

  • Ferdinando A Mussa-Ivaldi
  • Ilana Nisky

ABC Robotics Initiative at Ben-Gurion University of the Negev

  • Ilana Nisky

Ministry of Science and Technology (Israel-Italy virtual lab on

  • Ilana Nisky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All the participants of the experiments signed a written informed consent form. Prior to signing the form, they read the information in a printed form, and heard an explanation by the experimenter. The procedures and the consent form were approved by the Human Subjects Research Committee of Ben Gurion University of the Negev, Be'er-Sheva, Israel, approval number 1283-1, dated from July 6th, 2015.

Copyright

© 2020, Farajian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,164
    views
  • 241
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mor Farajian
  2. Raz Leib
  3. Hanna Kossowsky
  4. Tomer Zaidenberg
  5. Ferdinando A Mussa-Ivaldi
  6. Ilana Nisky
(2020)
Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force
eLife 9:e52653.
https://doi.org/10.7554/eLife.52653

Share this article

https://doi.org/10.7554/eLife.52653