Highly-regulated, diversifying NTP-based biological conflict systems with implications for emergence of multicellularity

  1. Gurmeet Kaur
  2. A Maxwell Burroughs
  3. Lakshminarayan M Iyer
  4. L Aravind  Is a corresponding author
  1. National Institutes of Health, United States

Abstract

Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically-unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gurmeet Kaur

    Computational Biology Branch, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. A Maxwell Burroughs

    Computational Biology Branch, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2229-8771
  3. Lakshminarayan M Iyer

    Computational Biology Branch, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. L Aravind

    National Center for Biotechnology Information, National Institutes of Health, Bethesda, United States
    For correspondence
    aravind@ncbi.nlm.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0771-253X

Funding

National Institutes of Health (Intramural Research Program)

  • Gurmeet Kaur
  • A Maxwell Burroughs
  • Lakshminarayan M Iyer
  • L Aravind

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alfonso Valencia, Barcelona Supercomputing Center - BSC, Spain

Publication history

  1. Received: October 12, 2019
  2. Accepted: February 25, 2020
  3. Accepted Manuscript published: February 26, 2020 (version 1)
  4. Version of Record published: April 15, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,055
    Page views
  • 346
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gurmeet Kaur
  2. A Maxwell Burroughs
  3. Lakshminarayan M Iyer
  4. L Aravind
(2020)
Highly-regulated, diversifying NTP-based biological conflict systems with implications for emergence of multicellularity
eLife 9:e52696.
https://doi.org/10.7554/eLife.52696

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Dominik Handler ... Julius Brennecke
    Research Article

    RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino’s specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.

    1. Cell Biology
    2. Genetics and Genomics
    Peter S Johnstone, Maite Ogueta ... Deniz Top
    Tools and Resources

    Circadian clocks are highly conserved transcriptional regulators that control ~24-hour oscillations in gene expression, physiological function, and behavior. Circadian clocks exist in almost every tissue and are thought to control tissue-specific gene expression and function, synchronized by the brain clock. Many disease states are associated with loss of circadian regulation. How and when circadian clocks fail during pathogenesis remains largely unknown because it is currently difficult to monitor tissue-specific clock function in intact organisms. Here, we developed a method to directly measure the transcriptional oscillation of distinct neuronal and peripheral clocks in live, intact Drosophila, which we term Locally Activatable BioLuminescence, or LABL. Using this method, we observed that specific neuronal and peripheral clocks exhibit distinct transcriptional properties. Loss of the receptor for PDF, a circadian neurotransmitter critical for the function of the brain clock, disrupts circadian locomotor activity but not all tissue-specific circadian clocks. We found that, while peripheral clocks in non-neuronal tissues were less stable after the loss of PDF signaling, they continued to oscillate. We also demonstrate that distinct clocks exhibit differences in their loss of oscillatory amplitude or their change in period, depending on their anatomical location, mutation, or fly age. Our results demonstrate that LABL is an effective tool that allows rapid, affordable, and direct real-time monitoring of individual clocks in vivo.