A Toll-receptor map underlies structural brain plasticity

  1. Guiyi Li
  2. Manuel G Forero
  3. Jill S Wentzell
  4. Ilgim Durmus
  5. Reinhard Wolf
  6. Niki C Anthoney
  7. Mieczyslaw Parker
  8. Ruiying Jiang
  9. Jacob Hasenauer
  10. Nicholas James Strausfeld
  11. Martin Heisenberg
  12. Alicia Hidalgo  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Universidad de Ibagué, Colombia
  3. University of Würzburg, Germany
  4. University of Arizona, United States

Abstract

Experience alters brain structure, but the underlying mechanism remained unknown. Structural plasticity reveals that brain function is encoded in generative changes to cells that compete with destructive processes driving neurodegeneration. At an adult critical period, experience increases fiber number and brain size in Drosophila. Here, we asked if Toll receptors are involved. Tolls demarcate a map of brain anatomical domains. Focusing on Toll-2, loss of function caused apoptosis, neurite atrophy and impaired behaviour. Toll-2 gain of function and neuronal activity at the critical period increased cell number. Toll-2 induced cycling of adult progenitor cells via a novel pathway, that antagonized MyD88-dependent quiescence, and engaged Weckle and Yorkie downstream. Constant knock-down of multiple Tolls synergistically reduced brain size. Conditional over-expression of Toll-2 and wek at the adult critical period increased brain size. Through their topographic distribution, Toll receptors regulate neuronal number and brain size, modulating structural plasticity in the adult brain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Guiyi Li

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel G Forero

    Facultad de Ingeniería, Universidad de Ibagué, Ibagué, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jill S Wentzell

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilgim Durmus

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Reinhard Wolf

    Rudolf-Virchow-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Niki C Anthoney

    Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3311-6328
  7. Mieczyslaw Parker

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ruiying Jiang

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jacob Hasenauer

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas James Strausfeld

    Department of Neuroscience, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1115-1774
  11. Martin Heisenberg

    Rudolf-Virchow-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4462-8655
  12. Alicia Hidalgo

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    a.hidalgo@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8041-5764

Funding

Biotechnology and Biological Sciences Research Council (BB/P004997/1)

  • Alicia Hidalgo

Biotechnology and Biological Sciences Research Council (BB/R017034/1)

  • Alicia Hidalgo

EU Marie Curie-Sklodowska Fellowship (NPN)

  • Jill S Wentzell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,784
    views

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guiyi Li
  2. Manuel G Forero
  3. Jill S Wentzell
  4. Ilgim Durmus
  5. Reinhard Wolf
  6. Niki C Anthoney
  7. Mieczyslaw Parker
  8. Ruiying Jiang
  9. Jacob Hasenauer
  10. Nicholas James Strausfeld
  11. Martin Heisenberg
  12. Alicia Hidalgo
(2020)
A Toll-receptor map underlies structural brain plasticity
eLife 9:e52743.
https://doi.org/10.7554/eLife.52743

Share this article

https://doi.org/10.7554/eLife.52743

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.