Abstract

Microtubules are cytoskeletal structures involved in stability, transport and organization in the cell. The building blocks, the α- and β-tubulin heterodimers, form protofilaments that associate laterally into the hollow microtubule. Microtubule also exists as highly stable doublet microtubules in the cilia where stability is needed for ciliary beating and function. The doublet microtubule maintains its stability through interactions at its inner and outer junctions where its A- and B-tubules meet. Here, using cryo-electron microscopy, bioinformatics and mass spectrometry of the doublets of Chlamydomonas reinhardtii and Tetrahymena thermophila, we identified two new inner junction proteins, FAP276 and FAP106, and an inner junction-associated protein, FAP126, thus presenting the complete answer to the inner junction identity and localization. Our structural study of the doublets shows that the inner junction serves as an interaction hub involved tubulin post-translational modification. These interactions contribute to the stability of the doublet and hence, normal ciliary motility.

Data availability

Cryo-EM maps have been deposited in EM data bank (EMDB) with accession numbers of EMD-20855 (48-nm averaged Chlamydomonas doublet), EMD-20858 (16-nm averaged Chlamydomonas IJ region) and EMD-20856 (16-nm averaged Tetrahymena IJ region). The model of IJ of Chlamydomonas is available in Protein Data Bank (PDB) with an accession number of PDB: 6VE7.The mass spectrometry is deposited in DataDryad (doi:10.5061/dryad.d51c59zxt). Available at:https://datadryad.org/stash/share/bkrXp5Ww0iQUis6ocuEya2ivHWQ_YiTFO-VLeIjkQcM

The following data sets were generated

Article and author information

Author details

  1. Ahmad Abdelzaher Zaki Khalifa

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Muneyoshi Ichikawa

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Dai

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Shintaroh Kubo

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Corbin Black

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Katya Peri

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas S McAlear

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Veyron

    Department of Pharmacology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Shun Kai Yang

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Javier Vargas

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Susanne Bechstedt

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Jean-François Trempe

    Department of Pharmacology, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Khanh Huy Bui

    Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
    For correspondence
    huy.bui@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2814-9889

Funding

Canadian Institutes of Health Research (PJT-156354)

  • Khanh Huy Bui

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04954)

  • Khanh Huy Bui

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-04813)

  • Javier Vargas

Canada Institute For Advanced Research (Arzieli Global Scholar Program)

  • Khanh Huy Bui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Khalifa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,960
    views
  • 555
    downloads
  • 1,425
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ahmad Abdelzaher Zaki Khalifa
  2. Muneyoshi Ichikawa
  3. Daniel Dai
  4. Shintaroh Kubo
  5. Corbin Black
  6. Katya Peri
  7. Thomas S McAlear
  8. Simon Veyron
  9. Shun Kai Yang
  10. Javier Vargas
  11. Susanne Bechstedt
  12. Jean-François Trempe
  13. Khanh Huy Bui
(2020)
The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications
eLife 9:e52760.
https://doi.org/10.7554/eLife.52760

Share this article

https://doi.org/10.7554/eLife.52760

Further reading

    1. Structural Biology and Molecular Biophysics
    Mia L Abramsson, Robin A Corey ... Michael Landreh
    Research Article

    Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.

    1. Structural Biology and Molecular Biophysics
    Giuseppe Deganutti, Ludovico Pipito ... Christopher Arthur Reynolds
    Research Article

    The structural basis for the pharmacology of human G protein-coupled receptors (GPCRs), the most abundant membrane proteins and the target of about 35% of approved drugs, is still a matter of intense study. What makes GPCRs challenging to study is the inherent flexibility and the metastable nature of interaction with extra- and intracellular partners that drive their effects. Here, we present a molecular dynamics (MD) adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), to address complex structural transitions involving GPCRs without energy input. We first report the binding and unbinding of the vasopressin peptide from its receptor V2. Successively, we present the complete transition of the glucagon-like peptide-1 receptor (GLP-1R) from inactive to active, agonist and Gs-bound state, and the guanosine diphosphate (GDP) release from Gs. To our knowledge, this is the first time the whole sequence of events leading from an inactive GPCR to the GDP release is simulated without any energy bias. We demonstrate that mwSuMD can address complex binding processes intrinsically linked to protein dynamics out of reach of classic MD.