Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin

  1. Taifeng Zhou
  2. Bo Gao
  3. Yi Fan
  4. Yuchen Liu
  5. Shuhao Feng
  6. Qian Cong
  7. Xiaolei Zhang
  8. Yaxing Zhou
  9. Prem S Yadav
  10. Jiachen Lin
  11. Nan Wu
  12. Liang Zhao
  13. Dongsheng Huang
  14. Shuanhu Zhou
  15. Peiqiang Su  Is a corresponding author
  16. Yingzi Yang  Is a corresponding author
  1. Harvard School of Dental Medicine, United States
  2. Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
  3. Nanfang Hospital, Southern Medical University, China
  4. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
  5. Brigham and Women's Hospital, United States
  6. First Affiliated Hospital of Sun Yat-sen University, China

Abstract

Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and β-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/β-catenin complex formation. Yap1 and β-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced β-catenin activities.

Data availability

RNAseq source data for Figure. S3 has been deposited in GEO under the accession number GSE139121.All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Taifeng Zhou

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Gao

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Fan

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuchen Liu

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuhao Feng

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Qian Cong

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaolei Zhang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yaxing Zhou

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Prem S Yadav

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiachen Lin

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nan Wu

    Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9429-2889
  12. Liang Zhao

    Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Dongsheng Huang

    Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Shuanhu Zhou

    Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Peiqiang Su

    Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
    For correspondence
    supq@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  16. Yingzi Yang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    For correspondence
    yingzi_yang@hsdm.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3933-887X

Funding

National Institute of Dental and Craniofacial Research (R01DE025866)

  • Yingzi Yang

National Institute of Dental and Craniofacial Research (R01DE025866)

  • Qian Cong

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR070877)

  • Yingzi Yang

National Cancer Institute (R01CA222571)

  • Yuchen Liu

China Scholarship Council (201806380049)

  • Taifeng Zhou

China Scholarship Council (201806210436)

  • Jiachen Lin

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR070877)

  • Prem S Yadav

National Institute of Arthritis and Musculoskeletal and Skin Diseases

  • Yi Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#IS00000121-3) of the Harvard Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Harvard Medical School.

Copyright

© 2020, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,798
    views
  • 1,865
    downloads
  • 230
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taifeng Zhou
  2. Bo Gao
  3. Yi Fan
  4. Yuchen Liu
  5. Shuhao Feng
  6. Qian Cong
  7. Xiaolei Zhang
  8. Yaxing Zhou
  9. Prem S Yadav
  10. Jiachen Lin
  11. Nan Wu
  12. Liang Zhao
  13. Dongsheng Huang
  14. Shuanhu Zhou
  15. Peiqiang Su
  16. Yingzi Yang
(2020)
Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin
eLife 9:e52779.
https://doi.org/10.7554/eLife.52779

Share this article

https://doi.org/10.7554/eLife.52779

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.