Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin

  1. Taifeng Zhou
  2. Bo Gao
  3. Yi Fan
  4. Yuchen Liu
  5. Shuhao Feng
  6. Qian Cong
  7. Xiaolei Zhang
  8. Yaxing Zhou
  9. Prem S Yadav
  10. Jiachen Lin
  11. Nan Wu
  12. Liang Zhao
  13. Dongsheng Huang
  14. Shuanhu Zhou
  15. Peiqiang Su  Is a corresponding author
  16. Yingzi Yang  Is a corresponding author
  1. Harvard School of Dental Medicine, United States
  2. Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
  3. Nanfang Hospital, Southern Medical University, China
  4. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
  5. Brigham and Women's Hospital, United States
  6. First Affiliated Hospital of Sun Yat-sen University, China

Abstract

Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and β-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/β-catenin complex formation. Yap1 and β-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced β-catenin activities.

Data availability

RNAseq source data for Figure. S3 has been deposited in GEO under the accession number GSE139121.All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Taifeng Zhou

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Gao

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Fan

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuchen Liu

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuhao Feng

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Qian Cong

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaolei Zhang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yaxing Zhou

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Prem S Yadav

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiachen Lin

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nan Wu

    Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9429-2889
  12. Liang Zhao

    Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Dongsheng Huang

    Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Shuanhu Zhou

    Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Peiqiang Su

    Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
    For correspondence
    supq@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  16. Yingzi Yang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    For correspondence
    yingzi_yang@hsdm.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3933-887X

Funding

National Institute of Dental and Craniofacial Research (R01DE025866)

  • Yingzi Yang

National Institute of Dental and Craniofacial Research (R01DE025866)

  • Qian Cong

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR070877)

  • Yingzi Yang

National Cancer Institute (R01CA222571)

  • Yuchen Liu

China Scholarship Council (201806380049)

  • Taifeng Zhou

China Scholarship Council (201806210436)

  • Jiachen Lin

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR070877)

  • Prem S Yadav

National Institute of Arthritis and Musculoskeletal and Skin Diseases

  • Yi Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#IS00000121-3) of the Harvard Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Harvard Medical School.

Version history

  1. Received: October 16, 2019
  2. Accepted: March 17, 2020
  3. Accepted Manuscript published: March 18, 2020 (version 1)
  4. Version of Record published: April 1, 2020 (version 2)

Copyright

© 2020, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,442
    Page views
  • 1,668
    Downloads
  • 161
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taifeng Zhou
  2. Bo Gao
  3. Yi Fan
  4. Yuchen Liu
  5. Shuhao Feng
  6. Qian Cong
  7. Xiaolei Zhang
  8. Yaxing Zhou
  9. Prem S Yadav
  10. Jiachen Lin
  11. Nan Wu
  12. Liang Zhao
  13. Dongsheng Huang
  14. Shuanhu Zhou
  15. Peiqiang Su
  16. Yingzi Yang
(2020)
Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin
eLife 9:e52779.
https://doi.org/10.7554/eLife.52779

Share this article

https://doi.org/10.7554/eLife.52779

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.