Antagonistic control of C. elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2

Abstract

Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on C. elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities towards the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xiaobo Wang

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mary Ellenbecker

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Hickey

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas J Day

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Osterli

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mikaya Terzo

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ekaterina Voronina

    Division of Biological Sciences, University of Montana, Missoula, United States
    For correspondence
    ekaterina.voronina@mso.umt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0194-4260

Funding

National Institute of General Medical Sciences (GM109053)

  • Ekaterina Voronina

National Institute of General Medical Sciences (P20GM103546)

  • Ekaterina Voronina

American Heart Association (18PRE34070028)

  • Xiaobo Wang

Montana Academy of Sciences

  • Xiaobo Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Version history

  1. Received: October 16, 2019
  2. Accepted: August 14, 2020
  3. Accepted Manuscript published: August 17, 2020 (version 1)
  4. Version of Record published: September 2, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,711
    views
  • 188
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaobo Wang
  2. Mary Ellenbecker
  3. Benjamin Hickey
  4. Nicholas J Day
  5. Emily Osterli
  6. Mikaya Terzo
  7. Ekaterina Voronina
(2020)
Antagonistic control of C. elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2
eLife 9:e52788.
https://doi.org/10.7554/eLife.52788

Share this article

https://doi.org/10.7554/eLife.52788

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.