Antagonistic control of C. elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2

Abstract

Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on C. elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities towards the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xiaobo Wang

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mary Ellenbecker

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Hickey

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas J Day

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Osterli

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mikaya Terzo

    Division of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ekaterina Voronina

    Division of Biological Sciences, University of Montana, Missoula, United States
    For correspondence
    ekaterina.voronina@mso.umt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0194-4260

Funding

National Institute of General Medical Sciences (GM109053)

  • Ekaterina Voronina

National Institute of General Medical Sciences (P20GM103546)

  • Ekaterina Voronina

American Heart Association (18PRE34070028)

  • Xiaobo Wang

Montana Academy of Sciences

  • Xiaobo Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,920
    views
  • 202
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaobo Wang
  2. Mary Ellenbecker
  3. Benjamin Hickey
  4. Nicholas J Day
  5. Emily Osterli
  6. Mikaya Terzo
  7. Ekaterina Voronina
(2020)
Antagonistic control of C. elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2
eLife 9:e52788.
https://doi.org/10.7554/eLife.52788

Share this article

https://doi.org/10.7554/eLife.52788

Further reading

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.

    1. Developmental Biology
    Valeria Sulzyk, Ludmila Curci ... Patricia S Cuasnicu
    Research Article

    Numerous reports showed that the epididymis plays key roles in the acquisition of sperm fertilizing ability but its contribution to embryo development remains less understood. Female mice mated with males with simultaneous mutations in Crisp1 and Crisp3 genes exhibited normal in vivo fertilization but impaired embryo development. In this work, we found that this phenotype was not due to delayed fertilization, and it was observed in eggs fertilized by epididymal sperm either in vivo or in vitro. Of note, eggs fertilized in vitro by mutant sperm displayed impaired meiotic resumption unrelated to Ca2+ oscillations defects during egg activation, supporting potential sperm DNA defects. Interestingly, cauda but not caput epididymal mutant sperm exhibited increased DNA fragmentation, revealing that DNA integrity defects appear during epididymal transit. Moreover, exposing control sperm to mutant epididymal fluid or to Ca2+-supplemented control fluid significantly increased DNA fragmentation. This, together with the higher intracellular Ca2+ levels detected in mutant sperm, supports a dysregulation in Ca2+ homeostasis within the epididymis and sperm as the main factor responsible for embryo development failure. These findings highlight the contribution of the epididymis beyond fertilization and identify CRISP1 and CRISP3 as novel factors essential for sperm DNA integrity and early embryo development.