From behavior to circuit modeling of light-seeking navigation in zebrafish larvae

  1. Sophia Karpenko
  2. Sebastien Wolf
  3. Julie Lafaye
  4. Guillaume Le Goc
  5. Thomas Panier
  6. Volker Bormuth
  7. Raphaël Candelier
  8. Georges Debrégeas  Is a corresponding author
  1. Laboratoire Jean Perrin, France
  2. Laboratoire de Physique de l'Ecole Normale Supérieure, France

Abstract

Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here we focus on light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predict the stationary distribution of the fish's body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can similarly capture the statistics of both spontaneous and contrast-driven navigation.

Data availability

Data and analysis codes are available at Dryad Digital: Data DOI: doi:10.5061/dryad.v9s4mw6qx

The following data sets were generated

Article and author information

Author details

  1. Sophia Karpenko

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Sebastien Wolf

    PSL, ENS, CNRS, IBENS, INSERM, Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julie Lafaye

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Guillaume Le Goc

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Panier

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Volker Bormuth

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Raphaël Candelier

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1523-6249
  8. Georges Debrégeas

    IBPS, CNRS, Sorbonne Université, Laboratoire Jean Perrin, Paris, France
    For correspondence
    georges.debregeas@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3698-4497

Funding

Human Frontier Science Program (RGP0060/2017)

  • Georges Debrégeas

H2020 European Research Council (71598)

  • Volker Bormuth

Agence Nationale de la Recherche (ANR-16-CE16-0017)

  • Raphaël Candelier
  • Georges Debrégeas

Fondation pour la Recherche Médicale (FDT201904008219)

  • Sophia Karpenko

ATIP-Avenir program

  • Volker Bormuth

Fondation pour la Recherche Médicale (SPF201809007064)

  • Sebastien Wolf

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by Le Comité d'Éthique pour l'Expérimentation Animale Charles Darwin C2EA-05 (02601.01).

Reviewing Editor

  1. Gordon J Berman, Emory University, United States

Version history

  1. Received: October 19, 2019
  2. Accepted: January 2, 2020
  3. Accepted Manuscript published: January 2, 2020 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2020, Karpenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,915
    Page views
  • 412
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophia Karpenko
  2. Sebastien Wolf
  3. Julie Lafaye
  4. Guillaume Le Goc
  5. Thomas Panier
  6. Volker Bormuth
  7. Raphaël Candelier
  8. Georges Debrégeas
(2020)
From behavior to circuit modeling of light-seeking navigation in zebrafish larvae
eLife 9:e52882.
https://doi.org/10.7554/eLife.52882

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.

    1. Computational and Systems Biology
    Ricardo Omar Ramirez Flores, Jan David Lanzer ... Julio Saez-Rodriguez
    Research Article

    Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.