Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans

  1. Chia-An Yen
  2. Dana L Ruter
  3. Christian D Turner
  4. Shanshan Pang
  5. Sean P Curran  Is a corresponding author
  1. University of Southern California, United States
  2. University of North Carolina, United States
  3. Chongqing University, China

Abstract

Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.

Data availability

RNA-Seq data are deposited in GEO database (GSE121920).-

The following data sets were generated

Article and author information

Author details

  1. Chia-An Yen

    Gerontology; Molecular and Computational Biology; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dana L Ruter

    Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian D Turner

    Gerontology; Molecular and Computational Biology; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shanshan Pang

    School of Life Sciences, Chongqing University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean P Curran

    Gerontology; Molecular and Computational Biology; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
    For correspondence
    spcurran@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7791-6453

Funding

National Institutes of Health (GM109028)

  • Sean P Curran

National Institutes of Health (AG058610)

  • Sean P Curran

National Institutes of Health (AG063947)

  • Sean P Curran

National Institutes of Health (AG000037)

  • Dana L Ruter

National Institutes of Health (GM118289)

  • Christian D Turner

American Federation for Aging Research

  • Chia-An Yen
  • Sean P Curran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hong Zhang, Institute of Biophysics, Chinese Academy of Sciences, China

Version history

  1. Received: October 19, 2019
  2. Accepted: February 5, 2020
  3. Accepted Manuscript published: February 5, 2020 (version 1)
  4. Version of Record published: February 20, 2020 (version 2)

Copyright

© 2020, Yen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,969
    views
  • 229
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chia-An Yen
  2. Dana L Ruter
  3. Christian D Turner
  4. Shanshan Pang
  5. Sean P Curran
(2020)
Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans
eLife 9:e52899.
https://doi.org/10.7554/eLife.52899

Share this article

https://doi.org/10.7554/eLife.52899

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.