Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex
Abstract
Clones of excitatory neurons derived from a common progenitor have been proposed to serve as elementary information processing modules in the neocortex. To characterize the cell types and circuit diagram of clonally related neurons, we performed multi-cell patch clamp recordings and Patch-seq on neurons derived from Nestin-positive progenitors labeled by tamoxifen induction at embryonic day 10.5. The resulting clones are derived from two radial glia on average, span cortical layers 2-6, and are composed of a random sampling of transcriptomic cell types. We find an interaction between shared lineage and connectivity: related neurons are more likely to be connected vertically across cortical layers, but not laterally within the same layer. These findings challenge the view that related neurons show uniformly increased connectivity and suggest that integration of vertical intra-clonal input with lateral inter-clonal input may represent a developmentally programmed connectivity motif supporting the emergence of functional circuits.
Data availability
Sequencing data have been deposited in GEO under accession code GSE140946. All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and 4. The source data provided for Figure 4 also apply to Figure 5 and Table 1.
-
Cell type composition and circuit organization of neocortical radial clonesNCBI Gene Expression Omnibus, GSE140946.
Article and author information
Author details
Funding
Baylor College of Medicine (Optical Imaging and Vital Microscopy Core)
- Andreas Savas Tolias
Baylor College of Medicine (Faculty start-up fund)
- Xialong Jiang
National Institutes of Health (F30MH095440,T32GM007330)
- Cathryn R Cadwell
National Institutes of Health (F30MH112312)
- Paul G Fahey
Baylor Research Advocates for Student Scientists (BRASS Scholar Award)
- Cathryn R Cadwell
- Paul G Fahey
National Institutes of Health (R01MH103108,R01DA028525,DP1EY023176,P30EY002520,T32EY07001,DP1OD008301)
- Andreas Savas Tolias
National Science Foundation (707359)
- Andreas Savas Tolias
Svenska Forskningsrådet Formas
- Rickard Sandberg
Vallee Foundation
- Rickard Sandberg
Deutsche Forschungsgemeinschaft (EXC 2064,BE5601/4-1)
- Philipp Berens
Bundesministerium für Bildung und Forschung (FKZ 01GQ1601)
- Philipp Berens
McKnight Foundation (McKnight Scholar Award)
- Andreas Savas Tolias
Arnold and Mabel Beckman Foundation (Young Investigator Award)
- Andreas Savas Tolias
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to an approved institutional animal care and use committee (IACUC) protocol of Baylor College of Medicine (protocol # AN-4703). Every effort was made to minimize suffering.
Reviewing Editor
- Anne E West, Duke University School of Medicine, United States
Publication history
- Received: October 22, 2019
- Accepted: March 2, 2020
- Accepted Manuscript published: March 5, 2020 (version 1)
- Accepted Manuscript updated: March 6, 2020 (version 2)
- Version of Record published: April 16, 2020 (version 3)
Copyright
© 2020, Cadwell et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,709
- Page views
-
- 589
- Downloads
-
- 20
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Natriuretic peptide signaling has been implicated in a broad range of physiological processes, regulating blood volume and pressure, ventricular hypertrophy, fat metabolism, and long bone growth. Here, we describe a completely novel role for natriuretic peptide signaling in the control of neural crest (NC) and cranial placode (CP) progenitors formation. Among the components of this signaling pathway, we show that natriuretic peptide receptor 3 (Npr3) plays a pivotal role by differentially regulating two developmental programs through its dual function as clearance and signaling receptor. Using a combination of MO-based knockdowns, pharmacological inhibitors and rescue assays we demonstrate that Npr3 cooperate with guanylate cyclase natriuretic peptide receptor 1 (Npr1) and natriuretic peptides (Nppa/Nppc) to regulate NC and CP formation, pointing at a broad requirement of this signaling pathway in early embryogenesis. We propose that Npr3 acts as a clearance receptor to regulate local concentrations of natriuretic peptides for optimal cGMP production through Npr1 activation, and as a signaling receptor to control cAMP levels through inhibition of adenylyl cyclase. The intracellular modulation of these second messengers therefore participates in the segregation of NC and CP cell populations.
-
- Developmental Biology
- Evolutionary Biology
Genetic studies in human and mice have established a dual role for Vsx genes in retina development: an early function in progenitors’ specification, and a later requirement for bipolar-cells fate determination. Despite their conserved expression patterns, it is currently unclear to which extent Vsx functions are also conserved across vertebrates, as mutant models are available only in mammals. To gain insight into vsx function in teleosts, we have generated vsx1 and vsx2 CRISPR/Cas9 double knockouts (vsxKO) in zebrafish. Our electrophysiological and histological analyses indicate severe visual impairment and bipolar cells depletion in vsxKO larvae, with retinal precursors being rerouted toward photoreceptor or Müller glia fates. Surprisingly, neural retina is properly specified and maintained in mutant embryos, which do not display microphthalmia. We show that although important cis-regulatory remodelling occurs in vsxKO retinas during early specification, this has little impact at a transcriptomic level. Our observations point to genetic redundancy as an important mechanism sustaining the integrity of the retinal specification network, and to Vsx genes regulatory weight varying substantially among vertebrate species.