Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing

Abstract

In melanoma, the lymphocytic infiltrate is a prognostic parameter classified morphologically into 'brisk', 'non-brisk' and 'absent' entailing a functional association that has never been proved. Recently, it has been shown that lymphocytic populations can be very heterogeneous, and that anti-PD-1 immunotherapy supports activated T cells. Here, we characterize the immune landscape in primary melanoma by high-dimensional single cell multiplex analysis in tissue sections (MILAN technique) followed by image analysis, RT-PCR and shotgun proteomics. We observed that the brisk and non-brisk patterns are heterogeneous functional categories that can be further sub-classified into active, transitional or exhausted. The classification of primary melanomas based on the functional paradigm also shows correlation with spontaneous regression, and an improved prognostic value when compared to that of the brisk classification. Finally, the main inflammatory cell subpopulations that are present in the microenvironment associated with activation and exhaustion and their spatial relationships are described using neighbourhood analysis.

Data availability

All data generated or analysed during this study are included in the submission as source data files. We also included the codes to ease the review in process.

The following previously published data sets were used

Article and author information

Author details

  1. Francesca Maria Bosisio

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    For correspondence
    f.bosisio1@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8874-2003
  2. Asier Antoranz

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    For correspondence
    asierantoranz91@gmail.com
    Competing interests
    Asier Antoranz, Asier Antoranz is affiliated with ProtATonce Ltd. The author has no other competing interests to declare.
  3. Yannick van Herck

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Maddalena Maria Bolognesi

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    Maddalena Maria Bolognesi, Maddalena Maria Bolognesi has received funding from GlaxoSmithKline . The author has no other competing interests to declare.
  5. Lukas Marcelis

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5446-1801
  6. Clizia Chinello

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  7. Jasper Wouters

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7129-2990
  8. Fulvio Magni

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  9. Leonidas Alexopoulos

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    Competing interests
    No competing interests declared.
  10. Marguerite Stas

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  11. Veerle Boecxstaens

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  12. Oliver Bechter

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  13. Giorgio Cattoretti

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3799-3221
  14. Joost van den Oord

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.

Funding

Horizon 2020 Framework Programme (642295)

  • Francesca Maria Bosisio

Horizon 2020 Framework Programme (675585)

  • Asier Antoranz

BEL114054 (HGS1006-C1121)

  • Maddalena Maria Bolognesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico

Ethics

Human subjects: Ethical approval was obtained from the Ethical Committee/IRB OG032 of the University Hospital of Leuven. After the approval, the study was identified with the number S57266. According to the Clinical Trial regalement no informed consent was needed due to the use of post-diagnostic left-over material.

Version history

  1. Received: October 23, 2019
  2. Accepted: February 14, 2020
  3. Accepted Manuscript published: February 14, 2020 (version 1)
  4. Version of Record published: February 25, 2020 (version 2)

Copyright

© 2020, Bosisio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,463
    views
  • 368
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Maria Bosisio
  2. Asier Antoranz
  3. Yannick van Herck
  4. Maddalena Maria Bolognesi
  5. Lukas Marcelis
  6. Clizia Chinello
  7. Jasper Wouters
  8. Fulvio Magni
  9. Leonidas Alexopoulos
  10. Marguerite Stas
  11. Veerle Boecxstaens
  12. Oliver Bechter
  13. Giorgio Cattoretti
  14. Joost van den Oord
(2020)
Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing
eLife 9:e53008.
https://doi.org/10.7554/eLife.53008

Share this article

https://doi.org/10.7554/eLife.53008

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.