Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing

Abstract

In melanoma, the lymphocytic infiltrate is a prognostic parameter classified morphologically into 'brisk', 'non-brisk' and 'absent' entailing a functional association that has never been proved. Recently, it has been shown that lymphocytic populations can be very heterogeneous, and that anti-PD-1 immunotherapy supports activated T cells. Here, we characterize the immune landscape in primary melanoma by high-dimensional single cell multiplex analysis in tissue sections (MILAN technique) followed by image analysis, RT-PCR and shotgun proteomics. We observed that the brisk and non-brisk patterns are heterogeneous functional categories that can be further sub-classified into active, transitional or exhausted. The classification of primary melanomas based on the functional paradigm also shows correlation with spontaneous regression, and an improved prognostic value when compared to that of the brisk classification. Finally, the main inflammatory cell subpopulations that are present in the microenvironment associated with activation and exhaustion and their spatial relationships are described using neighbourhood analysis.

Data availability

All data generated or analysed during this study are included in the submission as source data files. We also included the codes to ease the review in process.

The following previously published data sets were used

Article and author information

Author details

  1. Francesca Maria Bosisio

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    For correspondence
    f.bosisio1@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8874-2003
  2. Asier Antoranz

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    For correspondence
    asierantoranz91@gmail.com
    Competing interests
    Asier Antoranz, Asier Antoranz is affiliated with ProtATonce Ltd. The author has no other competing interests to declare.
  3. Yannick van Herck

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Maddalena Maria Bolognesi

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    Maddalena Maria Bolognesi, Maddalena Maria Bolognesi has received funding from GlaxoSmithKline . The author has no other competing interests to declare.
  5. Lukas Marcelis

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5446-1801
  6. Clizia Chinello

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  7. Jasper Wouters

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7129-2990
  8. Fulvio Magni

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  9. Leonidas Alexopoulos

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    Competing interests
    No competing interests declared.
  10. Marguerite Stas

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  11. Veerle Boecxstaens

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  12. Oliver Bechter

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  13. Giorgio Cattoretti

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3799-3221
  14. Joost van den Oord

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.

Funding

Horizon 2020 Framework Programme (642295)

  • Francesca Maria Bosisio

Horizon 2020 Framework Programme (675585)

  • Asier Antoranz

BEL114054 (HGS1006-C1121)

  • Maddalena Maria Bolognesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the Ethical Committee/IRB OG032 of the University Hospital of Leuven. After the approval, the study was identified with the number S57266. According to the Clinical Trial regalement no informed consent was needed due to the use of post-diagnostic left-over material.

Copyright

© 2020, Bosisio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,644
    views
  • 397
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Maria Bosisio
  2. Asier Antoranz
  3. Yannick van Herck
  4. Maddalena Maria Bolognesi
  5. Lukas Marcelis
  6. Clizia Chinello
  7. Jasper Wouters
  8. Fulvio Magni
  9. Leonidas Alexopoulos
  10. Marguerite Stas
  11. Veerle Boecxstaens
  12. Oliver Bechter
  13. Giorgio Cattoretti
  14. Joost van den Oord
(2020)
Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing
eLife 9:e53008.
https://doi.org/10.7554/eLife.53008

Share this article

https://doi.org/10.7554/eLife.53008

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.