Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing

Abstract

In melanoma, the lymphocytic infiltrate is a prognostic parameter classified morphologically into 'brisk', 'non-brisk' and 'absent' entailing a functional association that has never been proved. Recently, it has been shown that lymphocytic populations can be very heterogeneous, and that anti-PD-1 immunotherapy supports activated T cells. Here, we characterize the immune landscape in primary melanoma by high-dimensional single cell multiplex analysis in tissue sections (MILAN technique) followed by image analysis, RT-PCR and shotgun proteomics. We observed that the brisk and non-brisk patterns are heterogeneous functional categories that can be further sub-classified into active, transitional or exhausted. The classification of primary melanomas based on the functional paradigm also shows correlation with spontaneous regression, and an improved prognostic value when compared to that of the brisk classification. Finally, the main inflammatory cell subpopulations that are present in the microenvironment associated with activation and exhaustion and their spatial relationships are described using neighbourhood analysis.

Data availability

All data generated or analysed during this study are included in the submission as source data files. We also included the codes to ease the review in process.

The following previously published data sets were used

Article and author information

Author details

  1. Francesca Maria Bosisio

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    For correspondence
    f.bosisio1@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8874-2003
  2. Asier Antoranz

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    For correspondence
    asierantoranz91@gmail.com
    Competing interests
    Asier Antoranz, Asier Antoranz is affiliated with ProtATonce Ltd. The author has no other competing interests to declare.
  3. Yannick van Herck

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Maddalena Maria Bolognesi

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    Maddalena Maria Bolognesi, Maddalena Maria Bolognesi has received funding from GlaxoSmithKline . The author has no other competing interests to declare.
  5. Lukas Marcelis

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5446-1801
  6. Clizia Chinello

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  7. Jasper Wouters

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7129-2990
  8. Fulvio Magni

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
  9. Leonidas Alexopoulos

    National Technical University of Athens, ProtATonce Ltd, Athens, Greece
    Competing interests
    No competing interests declared.
  10. Marguerite Stas

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  11. Veerle Boecxstaens

    Department of Surgical Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  12. Oliver Bechter

    Laboratory of Experimental Oncology, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  13. Giorgio Cattoretti

    Department of Medicine and Surgery, Università degli studi di Milano-Bicocca, Milan, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3799-3221
  14. Joost van den Oord

    Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.

Funding

Horizon 2020 Framework Programme (642295)

  • Francesca Maria Bosisio

Horizon 2020 Framework Programme (675585)

  • Asier Antoranz

BEL114054 (HGS1006-C1121)

  • Maddalena Maria Bolognesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the Ethical Committee/IRB OG032 of the University Hospital of Leuven. After the approval, the study was identified with the number S57266. According to the Clinical Trial regalement no informed consent was needed due to the use of post-diagnostic left-over material.

Copyright

© 2020, Bosisio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,547
    views
  • 383
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Maria Bosisio
  2. Asier Antoranz
  3. Yannick van Herck
  4. Maddalena Maria Bolognesi
  5. Lukas Marcelis
  6. Clizia Chinello
  7. Jasper Wouters
  8. Fulvio Magni
  9. Leonidas Alexopoulos
  10. Marguerite Stas
  11. Veerle Boecxstaens
  12. Oliver Bechter
  13. Giorgio Cattoretti
  14. Joost van den Oord
(2020)
Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing
eLife 9:e53008.
https://doi.org/10.7554/eLife.53008

Share this article

https://doi.org/10.7554/eLife.53008

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Vineeth Vengayil, Shreyas Niphadkar ... Sunil Laxman
    Research Article

    Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.

    1. Cancer Biology
    2. Genetics and Genomics
    Joakim W Karlsson, Vasu R Sah ... Jonas A Nilsson
    Research Article

    Uveal melanoma (UM) is a rare melanoma originating in the eye’s uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.