Robust and distributed neural representation of action values

  1. Eun Ju Shin
  2. Yunsil Jang
  3. Soyoun Kim
  4. Hoseok Kim
  5. Xinying Cai
  6. Hyunjung Lee
  7. Jung Hoon Sul
  8. Sung-Hyun Lee
  9. Yeonseung Chung
  10. Daeyeol Lee  Is a corresponding author
  11. Min Whan Jung  Is a corresponding author
  1. Korea Advanced Institute of Science and Technology, Republic of Korea
  2. Institute for Basic Science, Republic of Korea
  3. Karolinska Institutet, Sweden
  4. New York University Shanghai, China
  5. Kyungpook National University School of Medicine, Republic of Korea
  6. Ajou University School of Medicine, Republic of Korea
  7. Johns Hopkins University, United States

Abstract

Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Raw data to reproduce this work is archived at Dryad https://doi.org/10.5061/dryad.gtht76hj0

Article and author information

Author details

  1. Eun Ju Shin

    Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  2. Yunsil Jang

    Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Soyoun Kim

    Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1348-6401
  4. Hoseok Kim

    Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  5. Xinying Cai

    Neural and Cognitive Sciences, New York University Shanghai, Shanghai, China
    Competing interests
    No competing interests declared.
  6. Hyunjung Lee

    Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Jung Hoon Sul

    Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  8. Sung-Hyun Lee

    Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Republic of Korea
    Competing interests
    No competing interests declared.
  9. Yeonseung Chung

    Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  10. Daeyeol Lee

    Department of Neuroscience, Johns Hopkins University, Baltimore, United States
    For correspondence
    daeyeol@jhu.edu
    Competing interests
    Daeyeol Lee, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3474-019X
  11. Min Whan Jung

    Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
    For correspondence
    mwjung@kaist.ac.kr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-600X

Funding

Institute for Basic Science (IBS-R002-A1)

  • Min Whan Jung

National Institute of Mental Health (DA 029330)

  • Daeyeol Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy E Behrens, University of Oxford, United Kingdom

Version history

  1. Received: October 28, 2019
  2. Accepted: April 19, 2021
  3. Accepted Manuscript published: April 20, 2021 (version 1)
  4. Version of Record published: May 7, 2021 (version 2)

Copyright

© 2021, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,140
    views
  • 339
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eun Ju Shin
  2. Yunsil Jang
  3. Soyoun Kim
  4. Hoseok Kim
  5. Xinying Cai
  6. Hyunjung Lee
  7. Jung Hoon Sul
  8. Sung-Hyun Lee
  9. Yeonseung Chung
  10. Daeyeol Lee
  11. Min Whan Jung
(2021)
Robust and distributed neural representation of action values
eLife 10:e53045.
https://doi.org/10.7554/eLife.53045

Share this article

https://doi.org/10.7554/eLife.53045

Further reading

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.

    1. Neuroscience
    Alina Tetereva, Narun Pat
    Research Article

    One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36–100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.