Transformation of a temporal speech cue to a spatial neural code in human auditory cortex

  1. Neal P Fox
  2. Matthew Leonard
  3. Matthias J Sjerps
  4. Edward F Chang  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Donders Institute for Brain, Cognition and Behaviour, Radboud University, Netherlands

Abstract

In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of responses in phonetically-tuned neural populations in auditory cortex. It remains unknown whether similar neurophysiological mechanisms encode temporal cues like voice-onset time (VOT), which distinguishes sounds like /b/-/p/. We used direct brain recordings in humans to investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. We found that distinct neural populations respond preferentially to VOTs from one phonetic category, and are also sensitive to sub-phonetic VOT differences within a population's preferred category. In a simple neural network model, simulated populations tuned to detect either temporal gaps or coincidences between spectral cues captured encoding patterns observed in real neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical representation of both spectral and temporal speech cues.

Data availability

Data and code are available under a Creative Commons License at the project page on Open Science Framework (https://osf.io/9y7uh/).

The following data sets were generated

Article and author information

Author details

  1. Neal P Fox

    Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0298-3664
  2. Matthew Leonard

    Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthias J Sjerps

    Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Edward F Chang

    Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
    For correspondence
    edward.chang@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2480-4700

Funding

National Institutes of Health (R01-DC012379)

  • Edward F Chang

National Institutes of Health (F32-DC015966)

  • Neal P Fox

European Commission (FP7-623072)

  • Matthias J Sjerps

New York Stem Cell Foundation

  • Edward F Chang

William K. Bowes, Jr. Foundation

  • Edward F Chang

Howard Hughes Medical Institute

  • Edward F Chang

Shurl and Kay Curci Foundation

  • Edward F Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave their written informed consent before surgery and affirmed it at the start of each recording session. The study protocol was approved by the University of California, San Francisco Committee on Human Research. (Protocol number 10-03842: Task-evoked changes in the electrocorticogram in epilepsy patients undergoing invasive electrocorticography and cortical mapping for the surgical treatment of intractable seizures)

Reviewing Editor

  1. Jonathan Erik Peelle, Washington University in St. Louis, United States

Publication history

  1. Received: October 25, 2019
  2. Accepted: August 21, 2020
  3. Accepted Manuscript published: August 25, 2020 (version 1)
  4. Version of Record published: September 10, 2020 (version 2)

Copyright

© 2020, Fox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,696
    Page views
  • 284
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neal P Fox
  2. Matthew Leonard
  3. Matthias J Sjerps
  4. Edward F Chang
(2020)
Transformation of a temporal speech cue to a spatial neural code in human auditory cortex
eLife 9:e53051.
https://doi.org/10.7554/eLife.53051

Further reading

    1. Neuroscience
    Yonatan Sanz Perl, Sol Fittipaldi ... Enzo Tagliazucchi
    Research Article

    The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.

    1. Neuroscience
    Andrea Alamia, Lucie Terral ... Rufin VanRullen
    Research Article Updated

    Previous research has associated alpha-band [8–12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen’s left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.