Transformation of a temporal speech cue to a spatial neural code in human auditory cortex
Abstract
In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of responses in phonetically-tuned neural populations in auditory cortex. It remains unknown whether similar neurophysiological mechanisms encode temporal cues like voice-onset time (VOT), which distinguishes sounds like /b/-/p/. We used direct brain recordings in humans to investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. We found that distinct neural populations respond preferentially to VOTs from one phonetic category, and are also sensitive to sub-phonetic VOT differences within a population's preferred category. In a simple neural network model, simulated populations tuned to detect either temporal gaps or coincidences between spectral cues captured encoding patterns observed in real neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical representation of both spectral and temporal speech cues.
Data availability
Data and code are available under a Creative Commons License at the project page on Open Science Framework (https://osf.io/9y7uh/).
-
Transformation of a temporal speech cue to a spatial neural code in human auditory cortexOPen Science Framework, 9y7uh/.
Article and author information
Author details
Funding
National Institutes of Health (R01-DC012379)
- Edward F Chang
National Institutes of Health (F32-DC015966)
- Neal P Fox
European Commission (FP7-623072)
- Matthias J Sjerps
New York Stem Cell Foundation
- Edward F Chang
William K. Bowes, Jr. Foundation
- Edward F Chang
Howard Hughes Medical Institute
- Edward F Chang
Shurl and Kay Curci Foundation
- Edward F Chang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants gave their written informed consent before surgery and affirmed it at the start of each recording session. The study protocol was approved by the University of California, San Francisco Committee on Human Research. (Protocol number 10-03842: Task-evoked changes in the electrocorticogram in epilepsy patients undergoing invasive electrocorticography and cortical mapping for the surgical treatment of intractable seizures)
Copyright
© 2020, Fox et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,934
- views
-
- 320
- downloads
-
- 20
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
-
- Neuroscience
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.