Network dynamics underlying OFF responses in the auditory cortex

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic  Is a corresponding author
  1. Ecole Normale Superieure Paris, France
  2. CNRS, France

Abstract

Across sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely studied, the mechanisms generating OFF responses in cortical areas have so far not been fully elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of recurrent interactions at the network level. To test this hypothesis, we performed population analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to auditory stimuli, and compared linear single-cell and network models. While the single-cell model explained some prominent features of the data, it could not capture the structure across stimuli and trials. In contrast, the network model accounted for the low-dimensional organisation of population responses and their global structure across stimuli, where distinct stimuli activated mostly orthogonal dimensions in the neural state-space.

Data availability

Python code and data are available at https://github.com/gbondanelli/OffResponses

The following previously published data sets were used

Article and author information

Author details

  1. Giulio Bondanelli

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    No competing interests declared.
  2. Thomas Deneux

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9330-7655
  3. Brice Bathellier

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    Brice Bathellier, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9211-1960
  4. Srdjan Ostojic

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    For correspondence
    srdjan.ostojic@ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7473-1223

Funding

Agence Nationale de la Recherche (ANR-16-CE37-0016)

  • Giulio Bondanelli
  • Srdjan Ostojic

Agence Nationale de la Recherche (ANR-17-EURE-0017)

  • Giulio Bondanelli
  • Srdjan Ostojic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Latham, University College London, United Kingdom

Publication history

  1. Received: October 30, 2019
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 24, 2021 (version 1)
  4. Version of Record published: April 20, 2021 (version 2)

Copyright

© 2021, Bondanelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,930
    Page views
  • 312
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic
(2021)
Network dynamics underlying OFF responses in the auditory cortex
eLife 10:e53151.
https://doi.org/10.7554/eLife.53151

Further reading

    1. Neuroscience
    Abraham Katzen, Hui-Kuan Chung ... Shawn R Lockery
    Research Article Updated

    In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potentials are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a very small nervous system sets a new lower bound on the computational requirements for utility maximization and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution in this organism.

    1. Neuroscience
    Yuan-hao Wu, Ella Podvalny, Biyu J He
    Research Article Updated

    While there is a wealth of knowledge about core object recognition—our ability to recognize clear, high-contrast object images—how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla (7T) fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.