Network dynamics underlying OFF responses in the auditory cortex

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic  Is a corresponding author
  1. Ecole Normale Superieure Paris, France
  2. CNRS, France

Abstract

Across sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely studied, the mechanisms generating OFF responses in cortical areas have so far not been fully elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of recurrent interactions at the network level. To test this hypothesis, we performed population analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to auditory stimuli, and compared linear single-cell and network models. While the single-cell model explained some prominent features of the data, it could not capture the structure across stimuli and trials. In contrast, the network model accounted for the low-dimensional organisation of population responses and their global structure across stimuli, where distinct stimuli activated mostly orthogonal dimensions in the neural state-space.

Data availability

Python code and data are available at https://github.com/gbondanelli/OffResponses

The following previously published data sets were used

Article and author information

Author details

  1. Giulio Bondanelli

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    No competing interests declared.
  2. Thomas Deneux

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9330-7655
  3. Brice Bathellier

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    Brice Bathellier, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9211-1960
  4. Srdjan Ostojic

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    For correspondence
    srdjan.ostojic@ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7473-1223

Funding

Agence Nationale de la Recherche (ANR-16-CE37-0016)

  • Giulio Bondanelli
  • Srdjan Ostojic

Agence Nationale de la Recherche (ANR-17-EURE-0017)

  • Giulio Bondanelli
  • Srdjan Ostojic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Latham, University College London, United Kingdom

Version history

  1. Received: October 30, 2019
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 24, 2021 (version 1)
  4. Version of Record published: April 20, 2021 (version 2)

Copyright

© 2021, Bondanelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,319
    views
  • 352
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic
(2021)
Network dynamics underlying OFF responses in the auditory cortex
eLife 10:e53151.
https://doi.org/10.7554/eLife.53151

Share this article

https://doi.org/10.7554/eLife.53151

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.