Network dynamics underlying OFF responses in the auditory cortex

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic  Is a corresponding author
  1. Ecole Normale Superieure Paris, France
  2. CNRS, France

Abstract

Across sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely studied, the mechanisms generating OFF responses in cortical areas have so far not been fully elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of recurrent interactions at the network level. To test this hypothesis, we performed population analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to auditory stimuli, and compared linear single-cell and network models. While the single-cell model explained some prominent features of the data, it could not capture the structure across stimuli and trials. In contrast, the network model accounted for the low-dimensional organisation of population responses and their global structure across stimuli, where distinct stimuli activated mostly orthogonal dimensions in the neural state-space.

Data availability

Python code and data are available at https://github.com/gbondanelli/OffResponses

The following previously published data sets were used

Article and author information

Author details

  1. Giulio Bondanelli

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    No competing interests declared.
  2. Thomas Deneux

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9330-7655
  3. Brice Bathellier

    Paris-Saclay Institute of Neuroscience, CNRS, Gif sur Yvette, France
    Competing interests
    Brice Bathellier, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9211-1960
  4. Srdjan Ostojic

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    For correspondence
    srdjan.ostojic@ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7473-1223

Funding

Agence Nationale de la Recherche (ANR-16-CE37-0016)

  • Giulio Bondanelli
  • Srdjan Ostojic

Agence Nationale de la Recherche (ANR-17-EURE-0017)

  • Giulio Bondanelli
  • Srdjan Ostojic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Latham, University College London, United Kingdom

Publication history

  1. Received: October 30, 2019
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 24, 2021 (version 1)
  4. Version of Record published: April 20, 2021 (version 2)

Copyright

© 2021, Bondanelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,793
    Page views
  • 295
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulio Bondanelli
  2. Thomas Deneux
  3. Brice Bathellier
  4. Srdjan Ostojic
(2021)
Network dynamics underlying OFF responses in the auditory cortex
eLife 10:e53151.
https://doi.org/10.7554/eLife.53151

Further reading

    1. Neuroscience
    Kevin Vinberg, Jörgen Rosén ... Fredrik Ahs
    Research Article Updated

    Understanding the neural basis for individual differences in the skin conductance response (SCR) during discriminative fear conditioning may inform on our understanding of autonomic regulation in fear-related psychopathology. Previous region-of-interest (ROI) analyses have implicated the amygdala in regulating conditioned SCR, but whole brain analyses are lacking. This study examined correlations between individual differences in SCR during discriminative fear conditioning to social stimuli and neural activity throughout the brain, by using data from a large functional magnetic resonance imaging study of twins (N = 285 individuals). Results show that conditioned SCR correlates with activity in the dorsal anterior cingulate cortex/anterior midcingulate cortex, anterior insula, bilateral temporoparietal junction, right frontal operculum, bilateral dorsal premotor cortex, right superior parietal lobe, and midbrain. A ROI analysis additionally showed a positive correlation between amygdala activity and conditioned SCR in line with previous reports. We suggest that the observed whole brain correlates of SCR belong to a large-scale midcingulo-insular network related to salience detection and autonomic-interoceptive processing. Altered activity within this network may underlie individual differences in conditioned SCR and autonomic aspects of psychopathology.

    1. Neuroscience
    Rong Zhao, Stacy D Grunke ... Joanna L Jankowsky
    Research Article

    Neurodegenerative diseases are characterized by selective vulnerability of distinct cell populations; however, the cause for this specificity remains elusive. Here we show that entorhinal cortex layer 2 (EC2) neurons are unusually vulnerable to prolonged neuronal inactivity compared with neighboring regions of the temporal lobe, and that reelin+ stellate cells connecting EC with the hippocampus are preferentially susceptible within the EC2 population. We demonstrate that neuronal death after silencing can be elicited through multiple independent means of activity inhibition, and that preventing synaptic release, either alone or in combination with electrical shunting, is sufficient to elicit silencing-induced degeneration. Finally, we discovered that degeneration following synaptic silencing is governed by competition between active and inactive cells, which is a circuit refinement process traditionally thought to end early in postnatal life. Our data suggests that the developmental window for wholesale circuit plasticity may extend into adulthood for specific brain regions. We speculate that this sustained potential for remodeling by entorhinal neurons may support lifelong memory but renders them vulnerable to prolonged activity changes in disease.