1. Neuroscience
Download icon

Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex

  1. Eren Günseli  Is a corresponding author
  2. Mariam Aly
  1. Sabanci University, Turkey
  2. Columbia University, United States
Research Article
  • Cited 2
  • Views 2,377
  • Annotations
Cite this article as: eLife 2020;9:e53191 doi: 10.7554/eLife.53191

Abstract

Goal-directed attention is usually studied by providing individuals with explicit instructions on what they should attend to. But in daily life, we often use past experiences to guide our attentional states. Given the importance of memory for predicting upcoming events, we hypothesized that memory-guided attention is supported by neural preparation for anticipated attentional states. We examined preparatory coding in the human hippocampus and mPFC, two regions that are important for memory-guided behaviors, in two tasks: one where attention was guided by memory and another in which attention was explicitly instructed. Hippocampus and mPFC exhibited higher activity for memory-guided vs. explicitly instructed attention. Furthermore, representations in both regions contained information about upcoming attentional states. In the hippocampus, this preparation was stronger for memory-guided attention, and occurred alongside stronger coupling with visual cortex during attentional guidance. These results highlight the mechanisms by which memories are used to prepare for upcoming attentional goals.

Article and author information

Author details

  1. Eren Günseli

    Faculty of Arts and Social Sciences, Sabanci University, Istanbul, Turkey
    For correspondence
    gunseli.eren@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7944-7774
  2. Mariam Aly

    Department of Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4033-6134

Funding

National Science Foundation (BCS-184421)

  • Mariam Aly

Zuckerman Institute Seed Grant for MR Studies (CU-ZI-MR-S-0001)

  • Mariam Aly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Institutional Review Board at Columbia University (Protocol number: AAAR5338). Written informed consent was obtained from all participants.

Reviewing Editor

  1. Morgan Barense, University of Toronto, Canada

Publication history

  1. Received: October 31, 2019
  2. Accepted: April 7, 2020
  3. Accepted Manuscript published: April 7, 2020 (version 1)
  4. Version of Record published: May 19, 2020 (version 2)

Copyright

© 2020, Günseli & Aly

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,377
    Page views
  • 388
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    María Fernanda López-Gutiérrez et al.
    Research Article

    Previous studies have related pair bonding in Microtus ochrogaster, the prairie vole, with plastic changes in several brain regions. However, the interactions between these socially-relevant regions have yet to be described. In this study, we used resting state magnetic resonance imaging to explore bonding behaviors and functional connectivity of brain regions previously associated with pair bonding. Thirty-two male and female prairie voles were scanned at baseline, 24h and 2 weeks after the onset of cohabitation By using network based statistics, we identified that the functional connectivity of a cortico-striatal network predicted the onset of affiliative behavior, while another predicted the amount of social interaction during a partner preference test. Furthermore, a network with significant changes in time was revealed, also showing associations with the level of partner preference. Overall, our findings revealed the association between network-level functional connectivity changes and social bonding.

    1. Developmental Biology
    2. Neuroscience
    Alessia Caramello et al.
    Research Article Updated

    During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration toward the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.