Abstract

1300-nm three-photon calcium imaging has emerged as a useful technique to allow calcium imaging in deep brain regions. Application to large-scale neural activity imaging entails a careful balance between recording fidelity and tissue heating. We calculated and experimentally verified the excitation pulse energy to achieve the minimum photon count required for the detection of calcium transients in GCaMP6s-expressing neurons for 920-nm two-photon and 1320-nm three-photon excitation, respectively. Brain tissue heating by continuous three-photon imaging was simulated with Monte Carlo method and experimentally validated with immunohistochemistry. We observed increased immunoreactivity with 150 mW excitation power at 1.0- and 1.2-mm imaging depths. Based on the data, we explained how three-photon excitation achieves better calcium imaging fidelity than two-photon excitation in the deep brain and quantified the imaging depth where three-photon microscopy should be applied. Our analysis presents a translatable model for the optimization of three-photon calcium imaging based on experimentally tractable parameters.

Data availability

All the parameters for calculation and models have been summarized as tables in the texts. The source data for all the figures have been provided. All the simulation codes have been uploaded and available for downloads.

Article and author information

Author details

  1. Tianyu Wang

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    For correspondence
    tw329@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6087-6376
  2. Chunyan Wu

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dimitre G Ouzounov

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenchao Gu

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fei Xia

    Meining School of Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6591-8769
  6. Minsu Kim

    College of Human Ecology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xusan Yang

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Melissa R Warden

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2240-3997
  9. Chris Xu

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    For correspondence
    cx10@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (DBI-1707312)

  • Chunyan Wu
  • Dimitre G Ouzounov
  • Fei Xia
  • Xusan Yang

National Institutes of Health (DP2MH109982)

  • Wenchao Gu

Intelligence Advanced Research Projects Activity (D16PC00003)

  • Tianyu Wang
  • Dimitre G Ouzounov

Cornell Neurotech Mong Fellowships

  • Tianyu Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2010-0031) of Cornell University. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Ryohei Yasuda, Max Planck Florida Institute for Neuroscience, United States

Publication history

  1. Received: October 31, 2019
  2. Accepted: January 29, 2020
  3. Accepted Manuscript published: January 30, 2020 (version 1)
  4. Version of Record published: February 18, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,227
    Page views
  • 886
    Downloads
  • 50
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tianyu Wang
  2. Chunyan Wu
  3. Dimitre G Ouzounov
  4. Wenchao Gu
  5. Fei Xia
  6. Minsu Kim
  7. Xusan Yang
  8. Melissa R Warden
  9. Chris Xu
(2020)
Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain
eLife 9:e53205.
https://doi.org/10.7554/eLife.53205

Further reading

    1. Neuroscience
    Brian D Mueller, Sean A Merrill ... Erik M Jorgensen
    Research Article Updated

    Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.

    1. Cell Biology
    2. Neuroscience
    Yu Wang, Meghan Lee Arnold ... Barth D Grant
    Research Article Updated

    Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.