Abstract

1300-nm three-photon calcium imaging has emerged as a useful technique to allow calcium imaging in deep brain regions. Application to large-scale neural activity imaging entails a careful balance between recording fidelity and tissue heating. We calculated and experimentally verified the excitation pulse energy to achieve the minimum photon count required for the detection of calcium transients in GCaMP6s-expressing neurons for 920-nm two-photon and 1320-nm three-photon excitation, respectively. Brain tissue heating by continuous three-photon imaging was simulated with Monte Carlo method and experimentally validated with immunohistochemistry. We observed increased immunoreactivity with 150 mW excitation power at 1.0- and 1.2-mm imaging depths. Based on the data, we explained how three-photon excitation achieves better calcium imaging fidelity than two-photon excitation in the deep brain and quantified the imaging depth where three-photon microscopy should be applied. Our analysis presents a translatable model for the optimization of three-photon calcium imaging based on experimentally tractable parameters.

Data availability

All the parameters for calculation and models have been summarized as tables in the texts. The source data for all the figures have been provided. All the simulation codes have been uploaded and available for downloads.

Article and author information

Author details

  1. Tianyu Wang

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    For correspondence
    tw329@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6087-6376
  2. Chunyan Wu

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dimitre G Ouzounov

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenchao Gu

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fei Xia

    Meining School of Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6591-8769
  6. Minsu Kim

    College of Human Ecology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xusan Yang

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Melissa R Warden

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2240-3997
  9. Chris Xu

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    For correspondence
    cx10@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (DBI-1707312)

  • Chunyan Wu
  • Dimitre G Ouzounov
  • Fei Xia
  • Xusan Yang

National Institutes of Health (DP2MH109982)

  • Wenchao Gu

Intelligence Advanced Research Projects Activity (D16PC00003)

  • Tianyu Wang
  • Dimitre G Ouzounov

Cornell Neurotech Mong Fellowships

  • Tianyu Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2010-0031) of Cornell University. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,286
    views
  • 1,136
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tianyu Wang
  2. Chunyan Wu
  3. Dimitre G Ouzounov
  4. Wenchao Gu
  5. Fei Xia
  6. Minsu Kim
  7. Xusan Yang
  8. Melissa R Warden
  9. Chris Xu
(2020)
Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain
eLife 9:e53205.
https://doi.org/10.7554/eLife.53205

Share this article

https://doi.org/10.7554/eLife.53205

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Neuroscience
    Takashi Yamamoto, Kayoko Ueji ... Shinya Ugawa
    Research Article

    The concept of ‘kokumi’, which refers to an enhanced and more delicious flavor of food, has recently generated considerable interest in food science. However, kokumi has not been well studied in gustatory physiology, and the underlying neuroscientific mechanisms remain largely unexplored. Our previous research demonstrated that ornithine (L-ornithine), which is abundant in shijimi clams, enhanced taste preferences in mice. The present study aimed to build on these findings and investigate the mechanisms responsible for kokumi in rats. In two-bottle preference tests, the addition of ornithine, at a low concentration that did not increase the favorability of this substance alone, enhanced the animals’ preferences for umami, sweet, fatty, salty, and bitter solutions, with the intake of monosodium glutamate showing the most significant increase. Additionally, a mixture of umami and ornithine synergistically induced significant responses in the chorda tympani nerve, which transmits taste information to the brain from the anterior part of the tongue. The observed preference enhancement and increase in taste-nerve response were abolished by antagonists of the G-protein-coupled receptor family C group 6 subtype A (GPRC6A). Furthermore, immunohistochemical analysis indicated that GPRC6A was expressed in a subset of type II taste cells in rat fungiform papillae. These results provide new insights into flavor-enhancement mechanisms, confirming that ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor.