Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception

Abstract

Dysregulated cytokine expression by T cells plays a pivotal role in the pathogenesis of autoimmune diseases. However, the identification of the corresponding pathogenic subpopulations is a challenge, since a distinction between physiological variation and a new quality in the expression of protein markers requires combinatorial evaluation. Here, we were able to identify a super-functional follicular helper T cell (Tfh)-like subpopulation in lupus-prone NZBxW mice with our binning approach "pattern recognition of immune cells (PRI)". PRI uncovered a subpopulation of IL-21+ IFN-ghigh PD-1low CD40Lhigh CXCR5- Bcl-6- T cells specifically expanded in diseased mice. In addition, these cells express high levels of TNF-a and IL-2, and provide B cell help for IgG production in an IL-21 and CD40L dependent manner. This super-functional T cell subset might be a superior driver of autoimmune processes due to a polyfunctional and high cytokine expression combined with Tfh-like properties.

Data availability

Flow cytometry data have been deposited in FlowRepository under the accession code FR-FCM-Z2C8. All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1D, Figure 2A,B,D,E and figure supplement 1B; figure supplement 2B,E; figure supplement 3D, Figure 3C; figure supplement 1A-C, Figure 5A-D, Figure 6B,C and figure supplement 1A, Figure 7B+C

The following data sets were generated

Article and author information

Author details

  1. Stefanie Gryzik

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    For correspondence
    s_gryzik@web.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Yen Hoang

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    For correspondence
    yen.hoang@drfz.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Timo Lischke

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0413-4252
  4. Elodie Mohr

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    For correspondence
    elodie.mohr@drfz.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Melanie Venzke

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Isabelle Kadner

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Josephine Poetzsch

    Life Sciences, University of Potsdam, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Detlef Groth

    Bioinformatics, University of Potsdam, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andreas Radbruch

    Cell Biology, German Rheumatism Research Center (DRFZ), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Andreas Hutloff

    Chronic Immune Reactions, German Rheumatism Research Center (DRFZ), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Ria Baumgrass

    Signaltransduction, German Rheumatism Research Center (DRFZ), Berlin, Germany
    For correspondence
    baumgrass@drfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3289-1608

Funding

Bundesministerium für Bildung und Forschung (0316164A)

  • Ria Baumgrass

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Ethics

Animal experimentation: Animal experiments were approved by the local ethics committee LaGeSo (Landesamt für Gesundheit und Soziales) Berlin under animal experiment licenses T0187-01 and G0070/13.

Version history

  1. Received: October 31, 2019
  2. Accepted: May 20, 2020
  3. Accepted Manuscript published: May 22, 2020 (version 1)
  4. Version of Record published: June 5, 2020 (version 2)

Copyright

© 2020, Gryzik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,064
    views
  • 272
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Gryzik
  2. Yen Hoang
  3. Timo Lischke
  4. Elodie Mohr
  5. Melanie Venzke
  6. Isabelle Kadner
  7. Josephine Poetzsch
  8. Detlef Groth
  9. Andreas Radbruch
  10. Andreas Hutloff
  11. Ria Baumgrass
(2020)
Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception
eLife 9:e53226.
https://doi.org/10.7554/eLife.53226

Share this article

https://doi.org/10.7554/eLife.53226

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.