Neurodegeneration: Fly model sheds light on brain disease
Neuronal ceroid lipofuscinosis (NCL) refers to a group of progressive brain diseases that affect between 1 and 30 per 100,000 people and are characterized by a decline in motor abilities, seizures, dementia and premature death (Nosková et al., 2011; Haltia, 2003). Most NCLs are caused by the failure of cells to recycle various proteins inside lysosomes (Wisniewski et al., 2001; Henderson et al., 2016; Sambri et al., 2017; Warrier et al., 2013). However, one type of neuronal ceroid lipofuscinosis is different: CLN4 disease occurs when a patient inherits one mutant copy of the gene that encodes for a protein called CSPɑ, but the precise cellular dysfunction underlying CLN4 disease remains a mystery (Nosková et al., 2011; Benitez and Sands, 2017).
Mutations in this gene have been associated with both loss and gain of function. In theory, the mutations could deplete normal CSPɑ, and this loss of function could contribute to disease pathology. Alternatively, the mutations could enhance the normal activity of CSPɑ or lead to an additional, toxic function to drive disease pathology. Now, in eLife, Konrad Zinsmaier and colleagues at the University of Arizona and Yale University – including Elliot Imler as first author – report the generation of a new animal model to investigate the biological mechanisms underlying CLN4 disease (Imler et al., 2019).
Imler et al. started by expressing either the normal or mutant human forms of CSPɑ in flies and confirming that both were functional in fly cells. Next they confirmed that mutant forms of CSPɑ could mimic pathological features seen in CLN4 patients. Interestingly, they found that the severity of the disease correlated with the copy number of the mutated gene: a single copy of the mutated gene did not affect lifespan, but two copies led to more severe phenotypes and early death. To confirm that these results were not an artifact of expressing a human protein in flies, Imler et al. repeated many of their experiments using mutant versions of fly CSPɑ.
The Arizona–Yale team then looked at where mutant CSPɑ resides in neurons. Normally, one would expect to find CSPɑ at nerve terminals, but the mutations resulted in lower levels of the protein at nerve terminals and higher levels in regions of the cell that contained other proteins that had been marked for degradation. By using markers of different cellular components, the researchers demonstrated that mutant CSPɑ was accumulating on prelysosomal endosomes. An endosome is a mini-compartment within a cell that internalizes molecules from the cell membrane: the endosome then fuses with an organelle called a lysosome, and the molecules inside it are broken down and recycled. Imler et al. hypothesize that mutant CSPɑ may be re-routed from nerve terminals through the endolysosomal pathway. Consistent with this, electron microscopy revealed the formation of abnormal membrane structures in cells, which may be due to mutant CSPɑ congesting the trafficking system.
Next, Imler et al. modulated the levels of normal and mutant CSPɑ in cells. Reducing the level of normal CSPɑ reduced the mutant phenotypes, while increasing it exacerbated the mutant phenotypes. Similarly, reducing the level of a heat shock protein that normally interacts with CSPɑ attenuated mutant phenotypes, suggesting that the heat shock protein may play a role in disease biology. The Arizona–Yale team suggests that the disease-causing mutations in CSPɑ enhance its normal activity to disrupt the function of neurons. This gain-of-function mechanism is distinct from that found in the other NCLs, which typically arise from a deficiency in the function of the mutated gene.
The results of Imler et al. demonstrate the value of the fruit fly model to study CLN4 disease pathology. However, these results also paint a complex picture of CLN4, and much work remains to be done to understand how each molecular or cellular pathology contributes to the devastating cognitive and motor deficits found in patients. Future work can now focus on how these biochemical disruptions impact neuronal function over time, taking advantage of the many tools and techniques available in fly genetics in order to interrogate pathways that have additive or compensatory mechanisms that may someday yield therapeutic potential.
References
-
The neuronal ceroid-lipofuscinosesJournal of Neuropathology & Experimental Neurology 62:1–13.https://doi.org/10.1093/jnen/62.1.1
-
Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosisAmerican Journal of Human Genetics 89:241–252.https://doi.org/10.1016/j.ajhg.2011.07.003
-
Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinosesBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832:1827–1830.https://doi.org/10.1016/j.bbadis.2013.03.017
Article and author information
Author details
Publication history
- Version of Record published: December 6, 2019 (version 1)
Copyright
© 2019, Berryer et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 737
- Page views
-
- 69
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory- nerve innervation and accurate surface areas of all postsynaptic compartments. Detailed biophysically-based compartmental models can help develop hypotheses regarding how GBCs integrate inputs to yield their recorded responses to sound. We established a pipeline to export a precise reconstruction of auditory nerve axons and their endbulb terminals together with high-resolution dendrite, soma, and axon reconstructions into biophysically-detailed compartmental models that could be activated by a standard cochlear transduction model. With these constraints, the models predict auditory nerve input profiles whereby all endbulbs onto a GBC are subthreshold (coincidence detection mode), or one or two inputs are suprathreshold (mixed mode). The models also predict the relative importance of dendrite geometry, soma size, and axon initial segment length in setting action potential threshold and generating heterogeneity in sound-evoked responses, and thereby propose mechanisms by which GBCs may homeostatically adjust their excitability. Volume EM also reveals new dendritic structures and dendrites that lack innervation. This framework defines a pathway from subcellular morphology to synaptic connectivity, and facilitates investigation into the roles of specific cellular features in sound encoding. We also clarify the need for new experimental measurements to provide missing cellular parameters, and predict responses to sound for further in vivo studies, thereby serving as a template for investigation of other neuron classes.
-
- Genetics and Genomics
- Neuroscience
For at least two centuries, scientists have been enthralled by the “zombie” behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster “zombie fly” system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the “zombie fly” brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly’s hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.