Abstract

HLA-restricted T cell responses can induce antitumor effects in cancer patients. Previous human T cell research has largely focused on the few HLA alleles prevalent in a subset of ethnic groups. Here, using a panel of newly developed peptide-exchangeable peptide/HLA multimers and artificial antigen-presenting cells for 25 different class I alleles and greater than 800 peptides, we systematically and comprehensively mapped shared antigenic epitopes recognized by tumor-infiltrating T lymphocytes (TILs) from eight melanoma patients for all their class I alleles. We were able to determine the specificity, on average, of 12.2% of the TILs recognizing a mean of 3.1 shared antigen-derived epitopes across HLA-A, B, and C. Furthermore, we isolated a number of cognate T cell receptor genes with tumor reactivity. Our novel strategy allows for a more complete examination of the immune response and development of novel cancer immunotherapy not limited by HLA allele prevalence or tumor mutation burden.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kenji Murata

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    Kenji Murata, The University Health Network has filed patent application related to this study on which Kenji Murata is named as an inventor (US16/095,913, US62/813,639, US62/813,642, US62/813,644, US62/813,645, US62/813,647, US62/813,650, US62/813,651, and US62/823,487)..
  2. Munehide Nakatsugawa

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    Munehide Nakatsugawa, The University Health Network has filed patent application related to this study on which Munehide Nakatsugawa is named as an inventor (US16/095,913)..
  3. Muhammed A Rahman

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    Muhammed A Rahman, The University Health Network has filed patent application related to this study on which Muhammed A. Rahman is named as an inventor (US16/095,913)..
  4. Linh T Nguyen

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Douglas G Millar

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  6. David Thomas Mulder

    Clinical Cancer Genomics, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  7. Kenji Sugata

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  8. Hiroshi Saijo

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  9. Yukiko Matsunaga

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  10. Yuki Kagoya

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  11. Tingxi Guo

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  12. Mark Anczurowski

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  13. Chung-Hsi Wang

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  14. Brian D Burt

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  15. Dalam Ly

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  16. Kayoko Saso

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    Kayoko Saso, The University Health Network has filed patent application related to this study on which Kayoko Saso is named as an inventor (US62/813,639, US62/813,642, US62/813,644, US62/813,645, US62/813,647, US62/813,650, US62/813,651, and US62/823,487)..
  17. Alexandra Easson

    Surgical Oncology, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  18. David P Goldstein

    Surgical Oncology, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  19. Michael Reedijk

    Surgical Oncology, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  20. Danny A Ghazarian

    Laboratory Medicine and Pathobiology, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  21. Trevor J Pugh

    Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  22. Marcus O Butler

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    Marcus O Butler, Marcus O. Butler has served on advisory boards for Merck, BMS, Novartis, GSK, Immunocore, immunovaccine, Sanofi, and EMD Serono and received research funding for investigator initiated clinical trials from Merck and Takara Bio..
  23. Tak W Mak

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  24. Pamela S Ohashi

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  25. Naoto Hirano

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    For correspondence
    naoto.hirano@uhnresearch.ca
    Competing interests
    Naoto Hirano, Naoto Hirano reports receiving a research grant from and is a consultant for Takara Bio and Otsuka Pharmaceutical and serving on an advisory board for F. Hoffmann-La Roche. The University Health Network has filed patent application related to this study on which Naoto Hirano is named as an inventor (US16/095,913, US62/813,639, US62/813,642, US62/813,644, US62/813,645, US62/813,647, US62/813,650, US62/813,651, and US62/823,487)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9070-4754

Funding

Ontario Institute for Cancer Research (Clinical Investigator Award,IA-039)

  • Naoto Hirano

Province of Ontario

  • Mark Anczurowski

Natural Sciences and Engineering Research Council of Canada (Postgraduate Scholarship)

  • Tingxi Guo

Terry Fox Research Institute (Immunotherapy NeTwork (iTNT) Program)

  • Naoto Hirano

Terry Fox Research Institute (Immunotherapy NeTwork (iTNT) Program)

  • Pamela S Ohashi

Princess Margaret Cancer Centre Innovattion Accelerator Fund

  • Naoto Hirano

Princess Margaret Cancer Foundation

  • Naoto Hirano

Princess Margaret Cancer Foundation

  • Marcus O Butler

Mitacs (Intership)

  • Kenji Murata

Japan Society for the Promotion of Science (Postdoctoral Fellowship for Overseas Researchers and a Guglietti Fellowship)

  • Yuki Kagoya

Province of Ontario

  • Tingxi Guo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Guido Kroemer, University of Paris Descartes, France

Ethics

Human subjects: This study was conducted in accordance with the Helsinki Declaration and approved by the Research Ethics Board of the University Health Network, Toronto, Canada (UHN REB# 11-0343, 11-0348). Written informed consent was obtained from all healthy donors who provided peripheral blood samples.

Version history

  1. Received: November 1, 2019
  2. Accepted: April 4, 2020
  3. Accepted Manuscript published: April 21, 2020 (version 1)
  4. Version of Record published: May 18, 2020 (version 2)

Copyright

© 2020, Murata et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,792
    views
  • 880
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenji Murata
  2. Munehide Nakatsugawa
  3. Muhammed A Rahman
  4. Linh T Nguyen
  5. Douglas G Millar
  6. David Thomas Mulder
  7. Kenji Sugata
  8. Hiroshi Saijo
  9. Yukiko Matsunaga
  10. Yuki Kagoya
  11. Tingxi Guo
  12. Mark Anczurowski
  13. Chung-Hsi Wang
  14. Brian D Burt
  15. Dalam Ly
  16. Kayoko Saso
  17. Alexandra Easson
  18. David P Goldstein
  19. Michael Reedijk
  20. Danny A Ghazarian
  21. Trevor J Pugh
  22. Marcus O Butler
  23. Tak W Mak
  24. Pamela S Ohashi
  25. Naoto Hirano
(2020)
Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma
eLife 9:e53244.
https://doi.org/10.7554/eLife.53244

Share this article

https://doi.org/10.7554/eLife.53244

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.