Cerebellar patients have intact feedback control that can be leveraged to improve reaching

  1. Amanda M Zimmet
  2. Di Cao
  3. Amy J Bastian
  4. Noah J Cowan  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Kennedy Krieger Institute, United States

Abstract

It is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.

Data availability

All data generated or analyzed during this study will be openly on the JHU Data Archive under DOI 10.7281/T1/BCARLC.The data will be available here: https://archive.data.jhu.edu/dataverse/LIMBS

The following data sets were generated

Article and author information

Author details

  1. Amanda M Zimmet

    Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1457-3072
  2. Di Cao

    Mechanical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1547-9929
  3. Amy J Bastian

    Kennedy Krieger Institute, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Noah J Cowan

    Mechanical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    ncowan@jhu.edu
    Competing interests
    Noah J Cowan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-3770

Funding

National Institutes of Health (HD040289)

  • Amy J Bastian
  • Noah J Cowan

Applied Physics Laboratory Graduate Fellowship

  • Amanda M Zimmet

National Science Foundation (1825489)

  • Di Cao
  • Amy J Bastian
  • Noah J Cowan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experimental protocol was approved by the Institutional Review Board at Johns Hopkins University School of Medicine (protocol # IRB00182673) and all participants gave informed consent prior to joining this study, according to the Declaration of Helsinki.

Reviewing Editor

  1. Richard B Ivry, University of California, Berkeley, United States

Publication history

  1. Received: November 1, 2019
  2. Accepted: October 6, 2020
  3. Accepted Manuscript published: October 7, 2020 (version 1)
  4. Version of Record published: October 21, 2020 (version 2)

Copyright

© 2020, Zimmet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,570
    Page views
  • 219
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda M Zimmet
  2. Di Cao
  3. Amy J Bastian
  4. Noah J Cowan
(2020)
Cerebellar patients have intact feedback control that can be leveraged to improve reaching
eLife 9:e53246.
https://doi.org/10.7554/eLife.53246

Further reading

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

    1. Neuroscience
    Mohammad Ali Salehinejad et al.
    Research Article Updated

    Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.