1. Neuroscience
Download icon

Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively

  1. Adrian Ponce-Alvarez  Is a corresponding author
  2. Gabriela Mochol
  3. Ainhoa Hermoso-Mendizabal
  4. Jaime de la Rocha
  5. Gustavo Deco
  1. Universitat Pompeu Fabra, Spain
  2. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
Research Article
  • Cited 0
  • Views 1,036
  • Annotations
Cite this article as: eLife 2020;9:e53268 doi: 10.7554/eLife.53268

Abstract

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as 'stiff' dimensions, while it is insensitive to many others ('sloppy' dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.

Article and author information

Author details

  1. Adrian Ponce-Alvarez

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    adrian.ponce@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1446-7392
  2. Gabriela Mochol

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ainhoa Hermoso-Mendizabal

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaime de la Rocha

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3314-9384
  5. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (Flag-Era JTC PCI2018-092891)

  • Adrian Ponce-Alvarez
  • Gustavo Deco

Horizon 2020 Framework Programme (785907 HBP SGA2)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness (PSI2016-75688-P)

  • Gustavo Deco

Catalan Research Group Support (2017 SGR 1545)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2010-15730)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2013-46717-R)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness (Juan de la Cierva Fellowship IJCI-2014-21937)

  • Gabriela Mochol

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in accordance with protocols approved by the Animal Ethics Committee of the University of Barcelona (Comité d'Experimentació Animal, Universitat de Barcelona, Reference: 116/13).

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Publication history

  1. Received: November 1, 2019
  2. Accepted: March 16, 2020
  3. Accepted Manuscript published: March 17, 2020 (version 1)
  4. Version of Record published: March 31, 2020 (version 2)

Copyright

© 2020, Ponce-Alvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,036
    Page views
  • 191
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Javier Alegre-Cortés et al.
    Research Article Updated

    Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

    1. Neuroscience
    Ole Numssen et al.
    Research Article

    The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated functional specialization in the IPL supports some of the most distinctive human mental capacities.