Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively

  1. Adrian Ponce-Alvarez  Is a corresponding author
  2. Gabriela Mochol
  3. Ainhoa Hermoso-Mendizabal
  4. Jaime de la Rocha
  5. Gustavo Deco
  1. Universitat Pompeu Fabra, Spain
  2. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain

Abstract

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as 'stiff' dimensions, while it is insensitive to many others ('sloppy' dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.

Data availability

We made the spiking data publicly available here:https://github.com/adrianponce/Spont_stim_spiking_A1

Article and author information

Author details

  1. Adrian Ponce-Alvarez

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    adrian.ponce@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1446-7392
  2. Gabriela Mochol

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ainhoa Hermoso-Mendizabal

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaime de la Rocha

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3314-9384
  5. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (Flag-Era JTC PCI2018-092891)

  • Adrian Ponce-Alvarez
  • Gustavo Deco

Horizon 2020 Framework Programme (785907 HBP SGA2)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness (PSI2016-75688-P)

  • Gustavo Deco

Catalan Research Group Support (2017 SGR 1545)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2010-15730)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2013-46717-R)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness (Juan de la Cierva Fellowship IJCI-2014-21937)

  • Gabriela Mochol

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: All experiments were carried out in accordance with protocols approved by the Animal Ethics Committee of the University of Barcelona (Comité d'Experimentació Animal, Universitat de Barcelona, Reference: 116/13).

Version history

  1. Received: November 1, 2019
  2. Accepted: March 16, 2020
  3. Accepted Manuscript published: March 17, 2020 (version 1)
  4. Version of Record published: March 31, 2020 (version 2)

Copyright

© 2020, Ponce-Alvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,546
    Page views
  • 277
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian Ponce-Alvarez
  2. Gabriela Mochol
  3. Ainhoa Hermoso-Mendizabal
  4. Jaime de la Rocha
  5. Gustavo Deco
(2020)
Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively
eLife 9:e53268.
https://doi.org/10.7554/eLife.53268

Share this article

https://doi.org/10.7554/eLife.53268

Further reading

    1. Neuroscience
    Sydney Trask, Nicole C Ferrara
    Insight

    Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.