Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively

  1. Adrian Ponce-Alvarez  Is a corresponding author
  2. Gabriela Mochol
  3. Ainhoa Hermoso-Mendizabal
  4. Jaime de la Rocha
  5. Gustavo Deco
  1. Universitat Pompeu Fabra, Spain
  2. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain

Abstract

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as 'stiff' dimensions, while it is insensitive to many others ('sloppy' dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.

Data availability

We made the spiking data publicly available here:https://github.com/adrianponce/Spont_stim_spiking_A1

Article and author information

Author details

  1. Adrian Ponce-Alvarez

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    adrian.ponce@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1446-7392
  2. Gabriela Mochol

    Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ainhoa Hermoso-Mendizabal

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaime de la Rocha

    Biomedical Research August Pi i Sunyer (IDIBAPS), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3314-9384
  5. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (Flag-Era JTC PCI2018-092891)

  • Adrian Ponce-Alvarez
  • Gustavo Deco

Horizon 2020 Framework Programme (785907 HBP SGA2)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness (PSI2016-75688-P)

  • Gustavo Deco

Catalan Research Group Support (2017 SGR 1545)

  • Gustavo Deco

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2010-15730)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness together with the European Regional Development Fund Grants (SAF2013-46717-R)

  • Jaime de la Rocha

Spanish Ministry of Economy and Competitiveness (Juan de la Cierva Fellowship IJCI-2014-21937)

  • Gabriela Mochol

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in accordance with protocols approved by the Animal Ethics Committee of the University of Barcelona (Comité d'Experimentació Animal, Universitat de Barcelona, Reference: 116/13).

Copyright

© 2020, Ponce-Alvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,798
    views
  • 294
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian Ponce-Alvarez
  2. Gabriela Mochol
  3. Ainhoa Hermoso-Mendizabal
  4. Jaime de la Rocha
  5. Gustavo Deco
(2020)
Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively
eLife 9:e53268.
https://doi.org/10.7554/eLife.53268

Share this article

https://doi.org/10.7554/eLife.53268

Further reading

    1. Neuroscience
    Zhiping Cao, Wing-Ho Yung, Ya Ke
    Research Article

    Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.