Feedback inhibition and its control in an insect olfactory circuit

  1. Subhasis Ray
  2. Zane N Aldworth
  3. Mark A Stopfer  Is a corresponding author
  1. NIH/NICHD, United States

Abstract

Inhibitory neurons play critical roles in regulating and shaping olfactory responses in vertebrates and invertebrates. In insects, these roles are performed by relatively few neurons, which can be interrogated efficiently, revealing fundamental principles of olfactory coding. Here, with electrophysiological recordings from the locust and a large-scale biophysical model, we analyzed the properties and functions of GGN, a unique giant GABAergic neuron that plays a central role in structuring olfactory codes in the locust mushroom body. Our simulations suggest that depolarization of GGN at its input branch can globally inhibit KCs several hundred microns away. Our in vivo recordings show that GGN responds to odors with complex temporal patterns of depolarization and hyperpolarization that can vary with odors and across animals, leading our model to predict the existence of a yet-undiscovered olfactory pathway. Our analysis reveals basic new features of GGN and the olfactory network surrounding it.

Data availability

Traced neuronal morphology have been deposited on neuromorpho.org and they are currently being processed by the repository. Identical morphology data along with the computational models and simulation scripts are available on GitHub (https://github.com/subhacom/mbnet). Model source code curated in Model DB is available under the accession number 262670.

The following data sets were generated

Article and author information

Author details

  1. Subhasis Ray

    Section on Sensory Coding and Neural Ensembles, NIH/NICHD, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2566-7146
  2. Zane N Aldworth

    Section on Sensory Coding and Neural Ensembles, NIH/NICHD, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark A Stopfer

    Section on Sensory Coding and Neural Ensembles, NIH/NICHD, Bethesda, United States
    For correspondence
    stopferm@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9200-1884

Funding

NIH-NICHD (Intramural grant)

  • Subhasis Ray
  • Zane N Aldworth
  • Mark A Stopfer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, United States

Version history

  1. Received: November 3, 2019
  2. Accepted: March 9, 2020
  3. Accepted Manuscript published: March 12, 2020 (version 1)
  4. Version of Record published: April 9, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,037
    views
  • 248
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Subhasis Ray
  2. Zane N Aldworth
  3. Mark A Stopfer
(2020)
Feedback inhibition and its control in an insect olfactory circuit
eLife 9:e53281.
https://doi.org/10.7554/eLife.53281

Share this article

https://doi.org/10.7554/eLife.53281

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.