Abstract

Transient receptor potential canonical (TRPC) proteins form nonselective cation channels that play physiological roles in a wide variety of cells. Despite growing evidence supporting the therapeutic potential of TRPC6 inhibition in treating pathological cardiac and renal conditions, mechanistic understanding of TRPC6 function and modulation remains obscure. Here we report cryo-EM structures of TRPC6 in both antagonist-bound and agonist-bound states. The structures reveal two novel recognition sites for the small-molecule modulators corroborated by mutagenesis data. The antagonist binds to a cytoplasm-facing pocket formed by S1-S4 and the TRP helix, whereas the agonist wedges at the subunit interface between S6 and the pore helix. Conformational changes upon ligand binding illuminate a mechanistic rationale for understanding TRPC6 modulation. Furthermore, structural and mutagenesis analyses suggest several disease-related mutations enhance channel activity by disrupting interfacial interactions. Our results provide principles of drug action that may facilitate future design of small molecules to ameliorate TRPC6-mediated diseases.

Data availability

The low pass filtered and amplitude modified 3D cryo-EM density maps for TRPC6 in complex with antagonist AM-1473 (accession code: EMD-20954) and agonist AM-0883 (accession code: EMD-20953) have been deposited in the electron microscopy data bank. Atomic coordinates for TRPC6 in complex with antagonist AM-1473 (accession code: 6UZA) and agonist AM-0883 (accession code: 6UZ8) have been deposited in the protein data bank.

The following data sets were generated

Article and author information

Author details

  1. Yonghong Bai

    Molecular Engineering, Amgen Inc, Cambridge, United States
    For correspondence
    ybai80@gmail.com
    Competing interests
    Yonghong Bai, At the time of the study YB was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4334-0916
  2. Xinchao Yu

    Molecular Engineering, Amgen Inc, South San Francisco, United States
    For correspondence
    xyu01@amgen.com
    Competing interests
    Xinchao Yu, XY is affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  3. Hao Chen

    Protein Technologies, Amgen Inc, Cambridge, United States
    Competing interests
    Hao Chen, At the time of the study HC was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  4. Daniel Horne

    Medicinal Chemistry, Amgen Inc, Cambridge, United States
    Competing interests
    Daniel Horne, At the time of the study DH was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  5. Ryan White

    Medicinal Chemistry, Amgen Inc, Cambridge, United States
    Competing interests
    Ryan White, At the time of the study RW was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  6. Xiaosu Wu

    Cardiometabolic Disorders, Amgen Inc, South San Francisco, United States
    Competing interests
    Xiaosu Wu, XW is affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  7. Paul Lee

    Discovery Technologies, Amgen Inc, Thousand Oaks, United States
    Competing interests
    Paul Lee, At the time of the study PL was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  8. Yan Gu

    Protein Technologies, Amgen Inc, Cambridge, United States
    Competing interests
    Yan Gu, At the time of the study YG was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  9. Sudipa Ghimire-Rijal

    Molecular Engineering, Amgen Inc, Cambridge, United States
    Competing interests
    Sudipa Ghimire-Rijal, SGR is affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  10. Daniel C-H Lin

    Cardiometabolic Disorders, Amgen Inc, South San Francisco, United States
    For correspondence
    dclin@amgen.com
    Competing interests
    Daniel C-H Lin, DCHL is affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..
  11. Xin Huang

    Molecular Engineering, Amgen Inc, Cambridge, United States
    For correspondence
    hxin@amgen.com
    Competing interests
    Xin Huang, At the time of the study XH was affiliated with Amgen Research, Amgen Inc. and has no financial interests to declare. The author has no other competing interests to declare..

Funding

No external funding was received for this work.

Copyright

© 2020, Bai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,250
    views
  • 931
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yonghong Bai
  2. Xinchao Yu
  3. Hao Chen
  4. Daniel Horne
  5. Ryan White
  6. Xiaosu Wu
  7. Paul Lee
  8. Yan Gu
  9. Sudipa Ghimire-Rijal
  10. Daniel C-H Lin
  11. Xin Huang
(2020)
Structural basis for pharmacological modulation of the TRPC6 channel
eLife 9:e53311.
https://doi.org/10.7554/eLife.53311

Share this article

https://doi.org/10.7554/eLife.53311

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.