The natverse, a versatile toolbox for combining and analysing neuroanatomical data

  1. Alexander S Bates
  2. James D Manton
  3. Sridhar R Jagannathan
  4. Marta Costa
  5. Philipp Schlegel
  6. Torsten Rohlfing
  7. Gregory SXE Jefferis  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of Cambridge, United Kingdom
  3. SRI International, Neuroscience Program, United States

Abstract

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.

Data availability

All code is described at natverse.org which links to individual git repositories at github.com/natverse.

Article and author information

Author details

  1. Alexander S Bates

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1195-0445
  2. James D Manton

    Neurobiology Divison, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9260-3156
  3. Sridhar R Jagannathan

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Costa

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5948-3092
  5. Philipp Schlegel

    Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-1314
  6. Torsten Rohlfing

    SRI International, Neuroscience Program, Menlo Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory SXE Jefferis

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jefferis@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-9355

Funding

Medical Research Council (MC-U105188491)

  • Alexander S Bates
  • James D Manton
  • Gregory SXE Jefferis

H2020 European Research Council (649111)

  • Alexander S Bates
  • James D Manton
  • Marta Costa
  • Gregory SXE Jefferis

Wellcome (203261/Z/16/Z)

  • Sridhar R Jagannathan
  • Marta Costa
  • Philipp Schlegel
  • Gregory SXE Jefferis

Boehringer Ingelheim Fonds

  • Alexander S Bates

Herchel Smith Fund

  • Alexander S Bates

Fitzwilliam College

  • James D Manton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: November 5, 2019
  2. Accepted: April 11, 2020
  3. Accepted Manuscript published: April 14, 2020 (version 1)
  4. Version of Record published: May 21, 2020 (version 2)

Copyright

© 2020, Bates et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,798
    Page views
  • 555
    Downloads
  • 54
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander S Bates
  2. James D Manton
  3. Sridhar R Jagannathan
  4. Marta Costa
  5. Philipp Schlegel
  6. Torsten Rohlfing
  7. Gregory SXE Jefferis
(2020)
The natverse, a versatile toolbox for combining and analysing neuroanatomical data
eLife 9:e53350.
https://doi.org/10.7554/eLife.53350

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Stella Tamana, Maria Xenophontos ... Petros Kountouris
    Research Article

    Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the ACMG/AMP guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity, and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Mario García-Navarrete, Merisa Avdovic ... Krzysztof Wabnik
    Research Article Updated

    Cells convert electrical signals into chemical outputs to facilitate the active transport of information across larger distances. This electrical-to-chemical conversion requires a tightly regulated expression of ion channels. Alterations of ion channel expression provide landmarks of numerous pathological diseases, such as cardiac arrhythmia, epilepsy, or cancer. Although the activity of ion channels can be locally regulated by external light or chemical stimulus, it remains challenging to coordinate the expression of ion channels on extended spatial–temporal scales. Here, we engineered yeast Saccharomyces cerevisiae to read and convert chemical concentrations into a dynamic potassium channel expression. A synthetic dual-feedback circuit controls the expression of engineered potassium channels through phytohormones auxin and salicylate to produce a macroscopically coordinated pulses of the plasma membrane potential. Our study provides a compact experimental model to control electrical activity through gene expression in eukaryotic cell populations setting grounds for various cellular engineering, synthetic biology, and potential therapeutic applications.