The natverse, a versatile toolbox for combining and analysing neuroanatomical data

  1. Alexander S Bates
  2. James D Manton
  3. Sridhar R Jagannathan
  4. Marta Costa
  5. Philipp Schlegel
  6. Torsten Rohlfing
  7. Gregory SXE Jefferis  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of Cambridge, United Kingdom
  3. SRI International, Neuroscience Program, United States

Abstract

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.

Data availability

All code is described at natverse.org which links to individual git repositories at github.com/natverse.

Article and author information

Author details

  1. Alexander S Bates

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1195-0445
  2. James D Manton

    Neurobiology Divison, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9260-3156
  3. Sridhar R Jagannathan

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Costa

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5948-3092
  5. Philipp Schlegel

    Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-1314
  6. Torsten Rohlfing

    SRI International, Neuroscience Program, Menlo Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory SXE Jefferis

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jefferis@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-9355

Funding

Medical Research Council (MC-U105188491)

  • Alexander S Bates
  • James D Manton
  • Gregory SXE Jefferis

H2020 European Research Council (649111)

  • Alexander S Bates
  • James D Manton
  • Marta Costa
  • Gregory SXE Jefferis

Wellcome (203261/Z/16/Z)

  • Sridhar R Jagannathan
  • Marta Costa
  • Philipp Schlegel
  • Gregory SXE Jefferis

Boehringer Ingelheim Fonds

  • Alexander S Bates

Herchel Smith Fund

  • Alexander S Bates

Fitzwilliam College

  • James D Manton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: November 5, 2019
  2. Accepted: April 11, 2020
  3. Accepted Manuscript published: April 14, 2020 (version 1)
  4. Version of Record published: May 21, 2020 (version 2)

Copyright

© 2020, Bates et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,564
    Page views
  • 622
    Downloads
  • 82
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander S Bates
  2. James D Manton
  3. Sridhar R Jagannathan
  4. Marta Costa
  5. Philipp Schlegel
  6. Torsten Rohlfing
  7. Gregory SXE Jefferis
(2020)
The natverse, a versatile toolbox for combining and analysing neuroanatomical data
eLife 9:e53350.
https://doi.org/10.7554/eLife.53350

Share this article

https://doi.org/10.7554/eLife.53350

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Domingos Leite de Castro, Miguel Aroso ... Paulo Aguiar
    Research Article Updated

    Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson’s disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.

    1. Cancer Biology
    2. Computational and Systems Biology
    Sara Latini, Veronica Venafra ... Francesca Sacco
    Research Article

    Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.