Activated αIIbβ3 on platelets mediates flow-dependent NETosis via SLC44A2

  1. Adela Constantinescu-Bercu
  2. Luigi Grassi
  3. Mattia Frontini
  4. Isabelle I Salles-Crawley  Is a corresponding author
  5. Kevin Woollard  Is a corresponding author
  6. James TB Crawley  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Iba-dependent platelet 'priming' induces integrin aIIbb3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet aIIbb3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated aIIbb3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data underlying Figs 1, 2, 3, 4, 5c, 6, 8, and Figure 1, 3 and 7 Supplements are provided in separate 'Source Data' files.

Article and author information

Author details

  1. Adela Constantinescu-Bercu

    Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1274-2867
  2. Luigi Grassi

    Department of Haematology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mattia Frontini

    Department of Haematology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabelle I Salles-Crawley

    Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    i.salles@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin Woollard

    Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    k.woollard@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9839-5463
  6. James TB Crawley

    Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    j.crawley@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6723-7841

Funding

British Heart Foundation (FS/15/65/32036)

  • Isabelle I Salles-Crawley
  • Kevin Woollard
  • James TB Crawley

British Heart Foundation (PG/17/22/32868)

  • Isabelle I Salles-Crawley
  • Kevin Woollard
  • James TB Crawley

British Heart Foundation (FS/18/53/33863)

  • Mattia Frontini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Ginsburg, Howard Hughes Medical Institute, University of Michigan, United States

Ethics

Human subjects: Specific ethical approval was obtained from the Imperial College Research Ethics Committee (19IC5523) for drawing blood from healthy volunteers and genotyping these for the SLC44A2 SNP. Fresh blood was collected from consented healthy volunteers.

Version history

  1. Received: November 6, 2019
  2. Accepted: April 20, 2020
  3. Accepted Manuscript published: April 21, 2020 (version 1)
  4. Version of Record published: May 27, 2020 (version 2)

Copyright

© 2020, Constantinescu-Bercu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,399
    views
  • 430
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adela Constantinescu-Bercu
  2. Luigi Grassi
  3. Mattia Frontini
  4. Isabelle I Salles-Crawley
  5. Kevin Woollard
  6. James TB Crawley
(2020)
Activated αIIbβ3 on platelets mediates flow-dependent NETosis via SLC44A2
eLife 9:e53353.
https://doi.org/10.7554/eLife.53353

Share this article

https://doi.org/10.7554/eLife.53353

Further reading

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.