Top-down machine learning approach for high-throughput single-molecule analysis

  1. David S White
  2. Marcel P Goldschen-Ohm
  3. Randall H Goldsmith  Is a corresponding author
  4. Baron Chanda  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. University of Texas at Austin, United States

Abstract

Single-molecule approaches provide enormous insight into the dynamics of biomolecules, but adequately sampling distributions of states and events often requires extensive sampling. Although emerging experimental techniques can generate such large datasets, existing analysis tools are not suitable to process the large volume of data obtained in high-throughput paradigms. Here, we present a new analysis platform (DISC) that accelerates unsupervised analysis of single-molecule trajectories. By merging model-free statistical learning with the Viterbi algorithm, DISC idealizes single-molecule trajectories up to three orders of magnitude faster with improved accuracy compared to other commonly used algorithms. Further, we demonstrate the utility of DISC algorithm to probe cooperativity between multiple binding events in the cyclic nucleotide binding domains of HCN pacemaker channel. Given the flexible and efficient nature of DISC, we anticipate it will be a powerful tool for unsupervised processing of high-throughput data across a range of single-molecule experiments.

Data availability

Simulated and raw data in addition to analysis scripts are available at https://zenodo.org/record/3727917#.Xn0Fw9NKjq0DOI: 10.5281/zenodo.3727917

The following data sets were generated

Article and author information

Author details

  1. David S White

    Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. Marcel P Goldschen-Ohm

    Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1466-9808
  3. Randall H Goldsmith

    Chemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    rhg@chem.wisc.edu
    Competing interests
    No competing interests declared.
  4. Baron Chanda

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    For correspondence
    chanda@wisc.edu
    Competing interests
    Baron Chanda, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4954-7034

Funding

National Institute of Neurological Disorders and Stroke (NS-101723)

  • Baron Chanda

National Institute of Neurological Disorders and Stroke (NS-081320)

  • Baron Chanda

National Institute of Neurological Disorders and Stroke (NS-081293)

  • Baron Chanda

National Institute of General Medical Sciences (GM007507)

  • David S White

National Institute of General Medical Sciences (GM127957)

  • Randall H Goldsmith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: November 6, 2019
  2. Accepted: April 8, 2020
  3. Accepted Manuscript published: April 8, 2020 (version 1)
  4. Version of Record published: May 7, 2020 (version 2)

Copyright

© 2020, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,850
    views
  • 495
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David S White
  2. Marcel P Goldschen-Ohm
  3. Randall H Goldsmith
  4. Baron Chanda
(2020)
Top-down machine learning approach for high-throughput single-molecule analysis
eLife 9:e53357.
https://doi.org/10.7554/eLife.53357

Share this article

https://doi.org/10.7554/eLife.53357

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.