NeuroQuery, comprehensive meta-analysis of human brain mapping

  1. Jérôme Dockès  Is a corresponding author
  2. Russell A Poldrack
  3. Romain Primet
  4. Hande Gözükan
  5. Tal Yarkoni
  6. Fabian Suchanek
  7. Bertrand Thirion
  8. Gael Varoquaux  Is a corresponding author
  1. INRIA, France
  2. Stanford University, United States
  3. University of Texas at Austin, United States
  4. Télécom Paris University, France

Abstract

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.

Data availability

All the data that we can share without violating copyright (including word counts of publications) have been shared on https://github.com/neuroquery/ alongside with the analysis scripts. Everything is readily downloadable without any authorization or login required.

Article and author information

Author details

  1. Jérôme Dockès

    Parietal, INRIA, Palaiseau, France
    For correspondence
    jerome@dockes.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5304-2496
  2. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6755-0259
  3. Romain Primet

    Parietal, INRIA, Palaiseau, France
    Competing interests
    No competing interests declared.
  4. Hande Gözükan

    Parietal, INRIA, Palaiseau, France
    Competing interests
    No competing interests declared.
  5. Tal Yarkoni

    Department of Psychology, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
  6. Fabian Suchanek

    Data, Intelligence, and Graphs, Télécom Paris University, Palaiseau, France
    Competing interests
    No competing interests declared.
  7. Bertrand Thirion

    Parietal, INRIA, Paris, France
    Competing interests
    No competing interests declared.
  8. Gael Varoquaux

    Parietal, INRIA, Palaiseau, France
    For correspondence
    gael.varoquaux@inria.fr
    Competing interests
    Gael Varoquaux, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1076-5122

Funding

Digiteo (2016-1270D - Projet MetaCog)

  • Jérôme Dockès

National Institutes of Health (R01MH096906)

  • Tal Yarkoni

Agence Nationale de la Recherche (ANR-16- CE23-0007-01)

  • Fabian Suchanek

H2020 European Research Council (785907 (HBP SGA2))

  • Bertrand Thirion

H2020 European Research Council (826421 (VirtualbrainCloud))

  • Bertrand Thirion

Canada First Research Excellence Fund (Healthy Brains for Healthy Lives initiative)

  • Gael Varoquaux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Dockès et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,053
    views
  • 709
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jérôme Dockès
  2. Russell A Poldrack
  3. Romain Primet
  4. Hande Gözükan
  5. Tal Yarkoni
  6. Fabian Suchanek
  7. Bertrand Thirion
  8. Gael Varoquaux
(2020)
NeuroQuery, comprehensive meta-analysis of human brain mapping
eLife 9:e53385.
https://doi.org/10.7554/eLife.53385

Share this article

https://doi.org/10.7554/eLife.53385

Further reading

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.