NeuroQuery, comprehensive meta-analysis of human brain mapping

  1. Jérôme Dockès  Is a corresponding author
  2. Russell A Poldrack
  3. Romain Primet
  4. Hande Gözükan
  5. Tal Yarkoni
  6. Fabian Suchanek
  7. Bertrand Thirion
  8. Gael Varoquaux  Is a corresponding author
  1. INRIA, France
  2. Stanford University, United States
  3. University of Texas at Austin, United States
  4. Télécom Paris University, France

Abstract

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.

Data availability

All the data that we can share without violating copyright (including word counts of publications) have been shared on https://github.com/neuroquery/ alongside with the analysis scripts. Everything is readily downloadable without any authorization or login required.

Article and author information

Author details

  1. Jérôme Dockès

    Parietal, INRIA, Palaiseau, France
    For correspondence
    jerome@dockes.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5304-2496
  2. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6755-0259
  3. Romain Primet

    Parietal, INRIA, Palaiseau, France
    Competing interests
    No competing interests declared.
  4. Hande Gözükan

    Parietal, INRIA, Palaiseau, France
    Competing interests
    No competing interests declared.
  5. Tal Yarkoni

    Department of Psychology, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
  6. Fabian Suchanek

    Data, Intelligence, and Graphs, Télécom Paris University, Palaiseau, France
    Competing interests
    No competing interests declared.
  7. Bertrand Thirion

    Parietal, INRIA, Paris, France
    Competing interests
    No competing interests declared.
  8. Gael Varoquaux

    Parietal, INRIA, Palaiseau, France
    For correspondence
    gael.varoquaux@inria.fr
    Competing interests
    Gael Varoquaux, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1076-5122

Funding

Digiteo (2016-1270D - Projet MetaCog)

  • Jérôme Dockès

National Institutes of Health (R01MH096906)

  • Tal Yarkoni

Agence Nationale de la Recherche (ANR-16- CE23-0007-01)

  • Fabian Suchanek

H2020 European Research Council (785907 (HBP SGA2))

  • Bertrand Thirion

H2020 European Research Council (826421 (VirtualbrainCloud))

  • Bertrand Thirion

Canada First Research Excellence Fund (Healthy Brains for Healthy Lives initiative)

  • Gael Varoquaux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas Yeo, National University of Singapore, Singapore

Version history

  1. Received: November 6, 2019
  2. Accepted: March 3, 2020
  3. Accepted Manuscript published: March 4, 2020 (version 1)
  4. Version of Record published: April 17, 2020 (version 2)

Copyright

© 2020, Dockès et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,306
    Page views
  • 628
    Downloads
  • 75
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jérôme Dockès
  2. Russell A Poldrack
  3. Romain Primet
  4. Hande Gözükan
  5. Tal Yarkoni
  6. Fabian Suchanek
  7. Bertrand Thirion
  8. Gael Varoquaux
(2020)
NeuroQuery, comprehensive meta-analysis of human brain mapping
eLife 9:e53385.
https://doi.org/10.7554/eLife.53385

Share this article

https://doi.org/10.7554/eLife.53385

Further reading

    1. Developmental Biology
    2. Neuroscience
    Wen Wang, Xiao Zhang ... Zi-Bing Jin
    Research Article Updated

    Chimeric RNAs have been found in both cancerous and healthy human cells. They have regulatory effects on human stem/progenitor cell differentiation, stemness maintenance, and central nervous system development. However, whether they are present in human retinal cells and their physiological functions in the retinal development remain unknown. Based on the human embryonic stem cell-derived retinal organoids (ROs) spanning from days 0 to 120, we present the expression atlas of chimeric RNAs throughout the developing ROs. We confirmed the existence of some common chimeric RNAs and also discovered many novel chimeric RNAs during retinal development. We focused on CTNNBIP1-CLSTN1 (CTCL) whose downregulation caused precocious neuronal differentiation and a marked reduction of neural progenitors in human cerebral organoids. CTCL is universally present in human retinas, ROs, and retinal cell lines, and its loss-of-function biases the progenitor cells toward retinal pigment epithelial cell fate at the expense of retinal cells. Together, this work provides a landscape of chimeric RNAs and reveals evidence for their critical role in human retinal development.

    1. Neuroscience
    Peibo Xu, Jian Peng ... Yuejun Chen
    Research Article

    Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.