Theoretical relation between axon initial segment geometry and excitability

  1. Sarah Goethals
  2. Romain Brette  Is a corresponding author
  1. Sorbonne Université, INSERM, CNRS, France


In most vertebrate neurons, action potentials are triggered at the distal end of the axon initial segment (AIS). Both position and length of the AIS vary across and within neuron types, with activity, development and pathology. What is the impact of AIS geometry on excitability? Direct empirical assessment has proven difficult because of the many potential confounding factors. Here we carried a principled theoretical analysis to answer this question. We provide a simple formula relating AIS geometry and sodium conductance density to the somatic voltage threshold. A distal shift of the AIS normally produces a (modest) increase in excitability, but we explain how this pattern can reverse if a hyperpolarizing current is present at the AIS, due to resistive coupling with the soma. This work provides a theoretical tool to assess the significance of structural AIS plasticity for electrical function.

Data availability

Code to generate all figures is available on GitHub: data analyzed in Fig. 2 has been uploaded on Zenodo: (DOI: 10.5281/zenodo.3539296), on behalf of Prof. Bean (Data from Hu & Bean, 2018).Digitized data used in Fig. 3 have been uploaded on GitHub (link above).

The following previously published data sets were used

Article and author information

Author details

  1. Sarah Goethals

    Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Romain Brette

    Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0110-1623


Agence Nationale de la Recherche (ANR-14-CE13-0003)

  • Sarah Goethals
  • Romain Brette

Ecole des Neurosciences de Paris (N/A)

  • Sarah Goethals
  • Romain Brette

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, Krembil Research Institute, University Health Network, Canada

Publication history

  1. Received: November 7, 2019
  2. Accepted: March 30, 2020
  3. Accepted Manuscript published: March 30, 2020 (version 1)
  4. Version of Record published: April 20, 2020 (version 2)


© 2020, Goethals & Brette

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,480
    Page views
  • 442
  • 18

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Goethals
  2. Romain Brette
Theoretical relation between axon initial segment geometry and excitability
eLife 9:e53432.

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Mingyao Pan, Bo Li
    Short Report Updated

    T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.