Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory
Abstract
The kinesin I family of motor proteins are crucial for axonal transport, but their roles in dendritic transport and postsynaptic function are not well-defined. Gene duplication and subsequent diversification give rise to three homologous kinesin I proteins (KIF5A, KIF5B and KIF5C) in vertebrates, but it is not clear whether and how they exhibit functional specificity. Here we show that knockdown of KIF5A or KIF5B differentially affects excitatory synapses and dendritic transport in hippocampal neurons. The functional specificities of the two kinesins are determined by their diverse carboxyl-termini, where arginine methylation occurs in KIF5B and regulates its function. KIF5B conditional knockout mice exhibit deficits in dendritic spine morphogenesis, synaptic plasticity and memory formation. Our findings provide insights into how expansion of the kinesin I family during evolution leads to diversification and specialization of motor proteins in regulating postsynaptic function.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Research Grant Council of Hong Kong (GRF 16100814)
- Kwok-On Lai
Shenzhen Peacock Team Project (KQTD2015033117210153)
- Jiandong Huang
Shenzhen Science Technology Innovation Committee Basic Science Research Grant (JCYJ20170413154523577)
- Jiandong Huang
University Grants Committee of Hong Kong (AoE/M-604/16)
- Wing-Ho Yung
University Grants Committee of Hong Kong (T13-605/18-W)
- Kwok-On Lai
Research Grant Council of Hong Kong (GRF 17135816)
- Kwok-On Lai
Research Grant Council of Hong Kong (GRF 17106018)
- Kwok-On Lai
Research Grant Council of Hong Kong (ECS 27119715)
- Kwok-On Lai
University Grants Committee of Hong Kong (AoE/M-604/16)
- Kwok-On Lai
Research Grant Council of Hong Kong (ECS 27103715)
- Cora Sau Wan Lai
Research Grant Council of Hong Kong (GRF 17128816)
- Cora Sau Wan Lai
National Natural Science Foundation of China (NSFC/General Program 31571031)
- Cora Sau Wan Lai
Health and Medical Research Fund Hong Kong (03143096)
- Cora Sau Wan Lai
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were approved and performed in accordance with University of Hong Kong Committee on the Use of Live Animals (CULATR 3935-16 and CULATR 4056-16) and in Teaching and Research guidelines.
Reviewing Editor
- Eunjoon Kim, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Republic of Korea
Version history
- Received: November 8, 2019
- Accepted: January 20, 2020
- Accepted Manuscript published: January 21, 2020 (version 1)
- Version of Record published: February 18, 2020 (version 2)
Copyright
© 2020, Zhao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,019
- Page views
-
- 753
- Downloads
-
- 37
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Structural Biology and Molecular Biophysics
Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.
-
- Cell Biology
- Immunology and Inflammation
Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.