Abstract

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signalling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.

Data availability

Crystallography data have been submitted to protein data bank (PDB)dark:ID: D_1292104678 and PDB ID: 6T3L1ps:ID: D_1292104679 and PDB ID: 6T3URaw diffraction images are in the process of being uploaded to CXIDB

The following data sets were generated

Article and author information

Author details

  1. Elin Claesson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Weixiao Yuan Wahlgren

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Heikki Takala

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Suraj Pandey

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leticia Castillon

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentyna Kuznetsova

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Léocadie Henry

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthijs Panman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3853-123X
  9. Melissa Carrillo

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joachim Kübel

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Rahul Nanekar

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  12. Linnéa Isaksson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Amke Nimmrich

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrea Cellini

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Dmitry Morozov

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Michał Maj

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  17. Moona Kurttila

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  18. Robert Bosman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Eriko Nango

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Rie Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  21. Tomoyuki Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  22. Luo Fangjia

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  23. So Iwata

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  24. Shigeki Owada

    RIKEN SPring-8 Center, Kyoto University, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  25. Keith Moffat

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Gerrit Groenhof

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  27. Emina A. Stojković

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Janne A. Ihalainen

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  29. Marius Schmidt

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    For correspondence
    smarius@uwm.edu
    Competing interests
    The authors declare that no competing interests exist.
  30. Sebastian Westenhoff

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    sebastian.westenhoff.2@gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-8015

Funding

European Research Council (279944)

  • Sebastian Westenhoff

Academy of Finland (285461)

  • Sebastian Westenhoff

Academy of Finland (296135)

  • Sebastian Westenhoff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: November 11, 2019
  2. Accepted: March 13, 2020
  3. Accepted Manuscript published: March 31, 2020 (version 1)
  4. Version of Record published: April 17, 2020 (version 2)

Copyright

© 2020, Claesson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,595
    views
  • 426
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elin Claesson
  2. Weixiao Yuan Wahlgren
  3. Heikki Takala
  4. Suraj Pandey
  5. Leticia Castillon
  6. Valentyna Kuznetsova
  7. Léocadie Henry
  8. Matthijs Panman
  9. Melissa Carrillo
  10. Joachim Kübel
  11. Rahul Nanekar
  12. Linnéa Isaksson
  13. Amke Nimmrich
  14. Andrea Cellini
  15. Dmitry Morozov
  16. Michał Maj
  17. Moona Kurttila
  18. Robert Bosman
  19. Eriko Nango
  20. Rie Tanaka
  21. Tomoyuki Tanaka
  22. Luo Fangjia
  23. So Iwata
  24. Shigeki Owada
  25. Keith Moffat
  26. Gerrit Groenhof
  27. Emina A. Stojković
  28. Janne A. Ihalainen
  29. Marius Schmidt
  30. Sebastian Westenhoff
(2020)
The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
eLife 9:e53514.
https://doi.org/10.7554/eLife.53514

Share this article

https://doi.org/10.7554/eLife.53514

Further reading

    1. Structural Biology and Molecular Biophysics
    Colin H Peters, Rohit K Singh ... John R Bankston
    Research Article

    Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.