Abstract

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signalling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.

Data availability

Crystallography data have been submitted to protein data bank (PDB)dark:ID: D_1292104678 and PDB ID: 6T3L1ps:ID: D_1292104679 and PDB ID: 6T3URaw diffraction images are in the process of being uploaded to CXIDB

The following data sets were generated

Article and author information

Author details

  1. Elin Claesson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Weixiao Yuan Wahlgren

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Heikki Takala

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Suraj Pandey

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leticia Castillon

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentyna Kuznetsova

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Léocadie Henry

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthijs Panman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3853-123X
  9. Melissa Carrillo

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joachim Kübel

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Rahul Nanekar

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  12. Linnéa Isaksson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Amke Nimmrich

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrea Cellini

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Dmitry Morozov

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Michał Maj

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  17. Moona Kurttila

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  18. Robert Bosman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Eriko Nango

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Rie Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  21. Tomoyuki Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  22. Luo Fangjia

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  23. So Iwata

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  24. Shigeki Owada

    RIKEN SPring-8 Center, Kyoto University, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  25. Keith Moffat

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Gerrit Groenhof

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  27. Emina A. Stojković

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Janne A. Ihalainen

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  29. Marius Schmidt

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    For correspondence
    smarius@uwm.edu
    Competing interests
    The authors declare that no competing interests exist.
  30. Sebastian Westenhoff

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    sebastian.westenhoff.2@gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-8015

Funding

European Research Council (279944)

  • Sebastian Westenhoff

Academy of Finland (285461)

  • Sebastian Westenhoff

Academy of Finland (296135)

  • Sebastian Westenhoff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Claesson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,847
    views
  • 453
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elin Claesson
  2. Weixiao Yuan Wahlgren
  3. Heikki Takala
  4. Suraj Pandey
  5. Leticia Castillon
  6. Valentyna Kuznetsova
  7. Léocadie Henry
  8. Matthijs Panman
  9. Melissa Carrillo
  10. Joachim Kübel
  11. Rahul Nanekar
  12. Linnéa Isaksson
  13. Amke Nimmrich
  14. Andrea Cellini
  15. Dmitry Morozov
  16. Michał Maj
  17. Moona Kurttila
  18. Robert Bosman
  19. Eriko Nango
  20. Rie Tanaka
  21. Tomoyuki Tanaka
  22. Luo Fangjia
  23. So Iwata
  24. Shigeki Owada
  25. Keith Moffat
  26. Gerrit Groenhof
  27. Emina A. Stojković
  28. Janne A. Ihalainen
  29. Marius Schmidt
  30. Sebastian Westenhoff
(2020)
The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
eLife 9:e53514.
https://doi.org/10.7554/eLife.53514

Share this article

https://doi.org/10.7554/eLife.53514

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.