Abstract

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signalling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.

Data availability

Crystallography data have been submitted to protein data bank (PDB)dark:ID: D_1292104678 and PDB ID: 6T3L1ps:ID: D_1292104679 and PDB ID: 6T3URaw diffraction images are in the process of being uploaded to CXIDB

The following data sets were generated

Article and author information

Author details

  1. Elin Claesson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Weixiao Yuan Wahlgren

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Heikki Takala

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Suraj Pandey

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leticia Castillon

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentyna Kuznetsova

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Léocadie Henry

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthijs Panman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3853-123X
  9. Melissa Carrillo

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joachim Kübel

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Rahul Nanekar

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  12. Linnéa Isaksson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Amke Nimmrich

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrea Cellini

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Dmitry Morozov

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Michał Maj

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  17. Moona Kurttila

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  18. Robert Bosman

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Eriko Nango

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Rie Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  21. Tomoyuki Tanaka

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  22. Luo Fangjia

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  23. So Iwata

    Department of Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  24. Shigeki Owada

    RIKEN SPring-8 Center, Kyoto University, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  25. Keith Moffat

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Gerrit Groenhof

    Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  27. Emina A. Stojković

    Department of Biology, Northeastern Illinois University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Janne A. Ihalainen

    Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
    Competing interests
    The authors declare that no competing interests exist.
  29. Marius Schmidt

    University of Wisconsin-Milwauke, University of Wisconsin-Milwaukee, Wisconsin, United States
    For correspondence
    smarius@uwm.edu
    Competing interests
    The authors declare that no competing interests exist.
  30. Sebastian Westenhoff

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    sebastian.westenhoff.2@gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-8015

Funding

European Research Council (279944)

  • Sebastian Westenhoff

Academy of Finland (285461)

  • Sebastian Westenhoff

Academy of Finland (296135)

  • Sebastian Westenhoff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Claesson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,784
    views
  • 444
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elin Claesson
  2. Weixiao Yuan Wahlgren
  3. Heikki Takala
  4. Suraj Pandey
  5. Leticia Castillon
  6. Valentyna Kuznetsova
  7. Léocadie Henry
  8. Matthijs Panman
  9. Melissa Carrillo
  10. Joachim Kübel
  11. Rahul Nanekar
  12. Linnéa Isaksson
  13. Amke Nimmrich
  14. Andrea Cellini
  15. Dmitry Morozov
  16. Michał Maj
  17. Moona Kurttila
  18. Robert Bosman
  19. Eriko Nango
  20. Rie Tanaka
  21. Tomoyuki Tanaka
  22. Luo Fangjia
  23. So Iwata
  24. Shigeki Owada
  25. Keith Moffat
  26. Gerrit Groenhof
  27. Emina A. Stojković
  28. Janne A. Ihalainen
  29. Marius Schmidt
  30. Sebastian Westenhoff
(2020)
The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
eLife 9:e53514.
https://doi.org/10.7554/eLife.53514

Share this article

https://doi.org/10.7554/eLife.53514

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.